CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Collaborative Local-Global Learning for Temporal Action Proposal
Zhu, Yisheng1; Han, Hu2; Liu, Guangcan1; Liu, Qingshan1
2021-12-01
发表期刊ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY
ISSN2157-6904
卷号12期号:5页码:14
摘要Temporal action proposal generation is an essential and challenging task in video understanding, which aims to locate the temporal intervals that likely contain the actions of interest. Although great progress has been made, the problem is still far from being well solved. In particular, prevalent methods can handle well only the local dependencies (i.e., short-term dependencies) among adjacent frames but are generally powerless in dealing with the global dependencies (i.e., long-term dependencies) between distant frames. To tackle this issue, we propose CLGNet, a novel Collaborative Local-Global Learning Network for temporal action proposal. The majority of CLGNet is an integration of Temporal Convolution Network and Bidirectional Long Short-Term Memory, in which Temporal Convolution Network is responsible for local dependencies while Bidirectional Long Short-Term Memory takes charge of handling the global dependencies. Furthermore, an attention mechanism called the background suppression module is designed to guide our model to focus more on the actions. Extensive experiments on two benchmark datasets, THUMOS'14 and ActivityNet-1.3, show that the proposed method can outperform state-of-the-art methods, demonstrating the strong capability of modeling the actions with varying temporal durations.
关键词Temporal action proposal generation untrimmed videos long short-term memory attention mechanism
DOI10.1145/3466181
收录类别SCI
语种英语
资助项目New Generation AI Major Project of Ministry of Science and Technology of China[2018AAA0102501]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:000732997200004
出版者ASSOC COMPUTING MACHINERY
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18006
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Guangcan
作者单位1.Nanjing Univ Infor Mat Sci & Technol, Sch Automat, 219 NingLiu Rd, Nanjing 210000, Jiangsu, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, 6 Kexueyuan South Rd, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Yisheng,Han, Hu,Liu, Guangcan,et al. Collaborative Local-Global Learning for Temporal Action Proposal[J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,2021,12(5):14.
APA Zhu, Yisheng,Han, Hu,Liu, Guangcan,&Liu, Qingshan.(2021).Collaborative Local-Global Learning for Temporal Action Proposal.ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,12(5),14.
MLA Zhu, Yisheng,et al."Collaborative Local-Global Learning for Temporal Action Proposal".ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 12.5(2021):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Yisheng]的文章
[Han, Hu]的文章
[Liu, Guangcan]的文章
百度学术
百度学术中相似的文章
[Zhu, Yisheng]的文章
[Han, Hu]的文章
[Liu, Guangcan]的文章
必应学术
必应学术中相似的文章
[Zhu, Yisheng]的文章
[Han, Hu]的文章
[Liu, Guangcan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。