CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Sampling Methods for Efficient Training of Graph Convolutional Networks: A Survey
Liu, Xin1,2; Yan, Mingyu1; Deng, Lei3; Li, Guoqi3; Ye, Xiaochun1; Fan, Dongrui1,2
2022-02-01
发表期刊IEEE-CAA JOURNAL OF AUTOMATICA SINICA
ISSN2329-9266
卷号9期号:2页码:205-234
摘要Graph convolutional networks (GCNs) have received significant attention from various research fields due to the excellent performance in learning graph representations. Although GCN performs well compared with other methods, it still faces challenges. Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs. Therefore, motivated by an urgent need in terms of efficiency and scalability in training GCN, sampling methods have been proposed and achieved a significant effect. In this paper, we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN. To highlight the characteristics and differences of sampling methods, we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories. Finally, we discuss some challenges and future research directions of the sampling methods.
关键词Efficient training graph convolutional networks (GCNs) graph neural networks (GNNs) sampling method
DOI10.1109/JAS.2021.1004311
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61732018] ; National Natural Science Foundation of China[61872335] ; National Natural Science Foundation of China[61802367] ; National Natural Science Foundation of China[61876215] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDC05000000] ; Beijing Academy of Artificial Intelligence (BAAI) ; Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing[2019A07] ; Open Project of Zhejiang Laboratory ; Institute for Guo Qiang, Tsinghua University
WOS研究方向Automation & Control Systems
WOS类目Automation & Control Systems
WOS记录号WOS:000714714500005
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:50[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17907
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yan, Mingyu
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100086, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
3.Tsinghua Univ, Ctr Brain Inspired Comp Res, Dept Precis Instrument, Beijing 100084, Peoples R China
推荐引用方式
GB/T 7714
Liu, Xin,Yan, Mingyu,Deng, Lei,et al. Sampling Methods for Efficient Training of Graph Convolutional Networks: A Survey[J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA,2022,9(2):205-234.
APA Liu, Xin,Yan, Mingyu,Deng, Lei,Li, Guoqi,Ye, Xiaochun,&Fan, Dongrui.(2022).Sampling Methods for Efficient Training of Graph Convolutional Networks: A Survey.IEEE-CAA JOURNAL OF AUTOMATICA SINICA,9(2),205-234.
MLA Liu, Xin,et al."Sampling Methods for Efficient Training of Graph Convolutional Networks: A Survey".IEEE-CAA JOURNAL OF AUTOMATICA SINICA 9.2(2022):205-234.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Xin]的文章
[Yan, Mingyu]的文章
[Deng, Lei]的文章
百度学术
百度学术中相似的文章
[Liu, Xin]的文章
[Yan, Mingyu]的文章
[Deng, Lei]的文章
必应学术
必应学术中相似的文章
[Liu, Xin]的文章
[Yan, Mingyu]的文章
[Deng, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。