CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Image style disentangling for instance-level facial attribute transfer
Guo, Xuyang1,2; Kan, Meina1; He, Zhenliang1,2; Song, Xingguang3; Shan, Shiguang1
2021-06-01
发表期刊COMPUTER VISION AND IMAGE UNDERSTANDING
ISSN1077-3142
卷号207页码:10
摘要Instance-level facial attribute transfer aims at transferring an attribute including its style from a source face to a target one. Existing studies have limitations on fidelity or correctness. To address this problem, we propose a weakly supervised style disentangling method embedded in Generative Adversarial Network (GAN) for accurate instance-level attribute transfer, using only binary attribute annotations. In our method, the whole attributes transfer process is designed as two steps for easier transfer, which first removes the original attribute or transfers it to a neutral state and then adds the attributes style disentangled from a source face. Moreover, a style disentangling module is proposed to extract the attribute style of an image used in the adding step. Our method aims for accurate attribute style transfer. However, it is also capable of semantic attribute editing as a special case, which is not achievable with existing instance-level attribute transfer methods. Comprehensive experiments on CelebA Dataset show that our method can transfer the style more precisely than existing methods, with an improvement of 39% in user study, 16.5% in accuracy, and about 3.3 in FID.
关键词Instance-level facial attribute transfer Image to image translation Generative adversarial network Weakly supervised style learning
DOI10.1016/j.cviu.2021.103205
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2017YFA0700800] ; National Key R&D Program of China[Y808401] ; Natural Science Foundation of China[61772496]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000648965900004
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17777
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Kan, Meina
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
3.Huawei Technol Co Ltd, Shenzhen 518129, Peoples R China
推荐引用方式
GB/T 7714
Guo, Xuyang,Kan, Meina,He, Zhenliang,et al. Image style disentangling for instance-level facial attribute transfer[J]. COMPUTER VISION AND IMAGE UNDERSTANDING,2021,207:10.
APA Guo, Xuyang,Kan, Meina,He, Zhenliang,Song, Xingguang,&Shan, Shiguang.(2021).Image style disentangling for instance-level facial attribute transfer.COMPUTER VISION AND IMAGE UNDERSTANDING,207,10.
MLA Guo, Xuyang,et al."Image style disentangling for instance-level facial attribute transfer".COMPUTER VISION AND IMAGE UNDERSTANDING 207(2021):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guo, Xuyang]的文章
[Kan, Meina]的文章
[He, Zhenliang]的文章
百度学术
百度学术中相似的文章
[Guo, Xuyang]的文章
[Kan, Meina]的文章
[He, Zhenliang]的文章
必应学术
必应学术中相似的文章
[Guo, Xuyang]的文章
[Kan, Meina]的文章
[He, Zhenliang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。