CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
pDeepXL: MS/MS Spectrum Prediction for Cross-Linked Peptide Pairs by Deep Learning
Chen, Zhen-Lin; Mao, Peng-Zhi; Zeng, Wen-Feng; Chi, Hao; He, Si-Min
2021-05-07
发表期刊JOURNAL OF PROTEOME RESEARCH
ISSN1535-3893
卷号20期号:5页码:2570-2582
摘要In cross-linking mass spectrometry, the identification of cross-linked peptide pairs heavily relies on the ability of a database search engine to measure the similarities between experimental and theoretical MS/MS spectra. However, the lack of accurate ion intensities in theoretical spectra impairs the performance of search engines, in particular, on proteome scales. Here we introduce pDeepXL, a deep neural network to predict MS/MS spectra of cross-linked peptide pairs. To train pDeepXL, we used the transfer-learning technique because it facilitated the training with limited benchmark data of cross-linked peptide pairs. Test results on more than ten data sets showed that pDeepXL accurately predicted the spectra of both noncleavable DSS/BS3/Leiker crosslinked peptide pairs (>80% of predicted spectra have Pearson's r values higher than 0.9) and cleavable DSSO/DSBU cross-linked peptide pairs (>75% of predicted spectra have Pearson's r values higher than 0.9). pDeepXL also achieved the accurate prediction on unseen data sets using an online fine-tuning technique. Lastly, integrating pDeepXL into a database search engine increased the number of identified cross-link spectra by 18% on average.
关键词cross-linking mass spectrometry spectrum prediction deep learning transfer learning online fine-tuning
DOI10.1021/acs.jproteome.0c01004
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[32071435] ; National Key Research and Development Program of China[2016YFA0501300]
WOS研究方向Biochemistry & Molecular Biology
WOS类目Biochemical Research Methods
WOS记录号WOS:000649269600036
出版者AMER CHEMICAL SOC
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17710
专题中国科学院计算技术研究所期刊论文_英文
通讯作者He, Si-Min
作者单位Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, CAS, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Chen, Zhen-Lin,Mao, Peng-Zhi,Zeng, Wen-Feng,et al. pDeepXL: MS/MS Spectrum Prediction for Cross-Linked Peptide Pairs by Deep Learning[J]. JOURNAL OF PROTEOME RESEARCH,2021,20(5):2570-2582.
APA Chen, Zhen-Lin,Mao, Peng-Zhi,Zeng, Wen-Feng,Chi, Hao,&He, Si-Min.(2021).pDeepXL: MS/MS Spectrum Prediction for Cross-Linked Peptide Pairs by Deep Learning.JOURNAL OF PROTEOME RESEARCH,20(5),2570-2582.
MLA Chen, Zhen-Lin,et al."pDeepXL: MS/MS Spectrum Prediction for Cross-Linked Peptide Pairs by Deep Learning".JOURNAL OF PROTEOME RESEARCH 20.5(2021):2570-2582.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Zhen-Lin]的文章
[Mao, Peng-Zhi]的文章
[Zeng, Wen-Feng]的文章
百度学术
百度学术中相似的文章
[Chen, Zhen-Lin]的文章
[Mao, Peng-Zhi]的文章
[Zeng, Wen-Feng]的文章
必应学术
必应学术中相似的文章
[Chen, Zhen-Lin]的文章
[Mao, Peng-Zhi]的文章
[Zeng, Wen-Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。