CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Hardware Acceleration for GCNs via Bidirectional Fusion
Li, Han1,2; Yan, Mingyu1,2; Yang, Xiaocheng1; Deng, Lei3; Li, Wenming1; Ye, Xiaochun1; Fan, Dongrui1,2; Xie, Yuan4
2021
发表期刊IEEE COMPUTER ARCHITECTURE LETTERS
ISSN1556-6056
卷号20期号:1页码:4
摘要Derived from the fusion of graph traversal and neural networks, graph convolutional neural networks (GCNs) have achieved state-of-the-art performance in graph learning. However, the hybrid execution pattern, caused by the opposite characteristics of graph traversal based phase and neural network based transformation phase, poses huge challenges to the efficient execution of traditional architectures. Although GCN accelerators have emerged to address these challenges, they fail to harvest both bidirectional execution and inter-phase fusion opportunities exposed by the alternate execution phases in GCNs. Previous works either concentrate on a single execution direction or exchange the execution order of phases without inter-phase fusion, hence failing to further improve performance and efficiency. Therefore, we propose a novel hardware unit named BiFusion, which can be easily applied to existing GCN accelerators with hybrid architecture in order to harvest both of the above opportunities. BiFusion enables dynamic direction selection and inter-phase fusion, and helps significantly reduce the amounts of data access and computation. Experiments show that integrating the BiFusion unit helps the state-of-the-art GCN accelerator achieve 2x speedup on average.
关键词Random access memory Computational modeling Analytical models Hardware Engines Computer architecture Transforms Graph convolutional neural networks hardware accelerator bidirectional execution inter-phase fusion
DOI10.1109/LCA.2021.3077956
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61732018] ; National Natural Science Foundation of China[61872335] ; National Natural Science Foundation of China[61802367]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture
WOS记录号WOS:000658323400003
出版者IEEE COMPUTER SOC
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17655
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yan, Mingyu
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Tsinghua Univ, Beijing 100084, Peoples R China
4.Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
推荐引用方式
GB/T 7714
Li, Han,Yan, Mingyu,Yang, Xiaocheng,et al. Hardware Acceleration for GCNs via Bidirectional Fusion[J]. IEEE COMPUTER ARCHITECTURE LETTERS,2021,20(1):4.
APA Li, Han.,Yan, Mingyu.,Yang, Xiaocheng.,Deng, Lei.,Li, Wenming.,...&Xie, Yuan.(2021).Hardware Acceleration for GCNs via Bidirectional Fusion.IEEE COMPUTER ARCHITECTURE LETTERS,20(1),4.
MLA Li, Han,et al."Hardware Acceleration for GCNs via Bidirectional Fusion".IEEE COMPUTER ARCHITECTURE LETTERS 20.1(2021):4.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Han]的文章
[Yan, Mingyu]的文章
[Yang, Xiaocheng]的文章
百度学术
百度学术中相似的文章
[Li, Han]的文章
[Yan, Mingyu]的文章
[Yang, Xiaocheng]的文章
必应学术
必应学术中相似的文章
[Li, Han]的文章
[Yan, Mingyu]的文章
[Yang, Xiaocheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。