CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
Ju, Fusong1,2; Zhu, Jianwei3; Shao, Bin3; Kong, Lupeng1,2; Liu, Tie-Yan3; Zheng, Wei-Mou2,4; Bu, Dongbo1,2
2021-05-05
发表期刊NATURE COMMUNICATIONS
ISSN2041-1723
卷号12期号:1页码:9
摘要Residue co-evolution has become the primary principle for estimating inter-residue distances of a protein, which are crucially important for predicting protein structure. Most existing approaches adopt an indirect strategy, i.e., inferring residue co-evolution based on some hand-crafted features, say, a covariance matrix, calculated from multiple sequence alignment (MSA) of target protein. This indirect strategy, however, cannot fully exploit the information carried by MSA. Here, we report an end-to-end deep neural network, CopulaNet, to estimate residue co-evolution directly from MSA. The key elements of CopulaNet include: (i) an encoder to model context-specific mutation for each residue; (ii) an aggregator to model residue co-evolution, and thereafter estimate inter-residue distances. Using CASP13 (the 13th Critical Assessment of Protein Structure Prediction) target proteins as representatives, we demonstrate that CopulaNet can predict protein structure with improved accuracy and efficiency. This study represents a step toward improved end-to-end prediction of inter-residue distances and protein tertiary structures. Protein structure prediction is a challenge. A new deep learning framework, CopulaNet, is a major step forward toward end-to-end prediction of inter-residue distances and protein tertiary structures with improved accuracy and efficiency.
DOI10.1038/s41467-021-22869-8
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018YFC0910405] ; National Key Research and Development Program of China[2020YFA0907000] ; National Natural Science Foundation of China[31671369] ; National Natural Science Foundation of China[31770775] ; National Natural Science Foundation of China[62072435]
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000656480900002
出版者NATURE RESEARCH
引用统计
被引频次:50[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17597
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhu, Jianwei; Bu, Dongbo
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Key Lab Intelligent Informat Proc,Big Data Acad, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Microsoft Res Asia, Beijing, Peoples R China
4.Chinese Acad Sci, Inst Theoret Phys, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Ju, Fusong,Zhu, Jianwei,Shao, Bin,et al. CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction[J]. NATURE COMMUNICATIONS,2021,12(1):9.
APA Ju, Fusong.,Zhu, Jianwei.,Shao, Bin.,Kong, Lupeng.,Liu, Tie-Yan.,...&Bu, Dongbo.(2021).CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction.NATURE COMMUNICATIONS,12(1),9.
MLA Ju, Fusong,et al."CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction".NATURE COMMUNICATIONS 12.1(2021):9.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ju, Fusong]的文章
[Zhu, Jianwei]的文章
[Shao, Bin]的文章
百度学术
百度学术中相似的文章
[Ju, Fusong]的文章
[Zhu, Jianwei]的文章
[Shao, Bin]的文章
必应学术
必应学术中相似的文章
[Ju, Fusong]的文章
[Zhu, Jianwei]的文章
[Shao, Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。