CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Cross-domain activity recognition via substructural optimal transport
Lu, Wang1,2; Chen, Yiqiang1,2; Wang, Jindong3; Qin, Xin1,2
2021-09-24
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号454页码:65-75
摘要It is expensive and time-consuming to collect sufficient labeled data for human activity recognition (HAR). Domain adaptation is a promising approach for cross-domain activity recognition. Existing methods mainly focus on adapting cross-domain representations via domain-level, class-level, or sample-level distribution matching. However, they might fail to capture the fine-grained locality information in activity data. The domain-and class-level matching are too coarse that may result in under-adaptation, while sample-level matching may be affected by the noise seriously and eventually cause over-adaptation. In this paper, we propose substructure-level matching for domain adaptation (SSDA) to better utilize the locality information of activity data for accurate and efficient knowledge transfer. Based on SSDA, we propose an optimal transport-based implementation, Substructural Optimal Transport (SOT), for cross domain HAR. We obtain the substructures of activities via clustering methods and seeks the coupling of the weighted substructures between different domains. We conduct comprehensive experiments on four public activity recognition datasets (i.e. UCI-DSADS, UCI-HAR, USC-HAD, PAMAP2), which demonstrates that SOT significantly outperforms other state-of-the-art methods w.r.t classification accuracy (9%+ improvement). In addition, SOT is 5x faster than traditional OT-based DA methods with the same hyper-parameters. (c) 2021 Elsevier B.V. All rights reserved.
关键词Ubiquitous computing Transfer learning Domain adaptation Optimal transport Clustering
DOI10.1016/j.neucom.2021.04.124
收录类别SCI
语种英语
资助项目KeyArea Research and Development Program of Guangdong Province[2019B010109001] ; National Natural Science Foundation of China[61972383]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000672469900007
出版者ELSEVIER
引用统计
被引频次:29[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17527
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Yiqiang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Microsoft Res Asia, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Lu, Wang,Chen, Yiqiang,Wang, Jindong,et al. Cross-domain activity recognition via substructural optimal transport[J]. NEUROCOMPUTING,2021,454:65-75.
APA Lu, Wang,Chen, Yiqiang,Wang, Jindong,&Qin, Xin.(2021).Cross-domain activity recognition via substructural optimal transport.NEUROCOMPUTING,454,65-75.
MLA Lu, Wang,et al."Cross-domain activity recognition via substructural optimal transport".NEUROCOMPUTING 454(2021):65-75.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Wang]的文章
[Chen, Yiqiang]的文章
[Wang, Jindong]的文章
百度学术
百度学术中相似的文章
[Lu, Wang]的文章
[Chen, Yiqiang]的文章
[Wang, Jindong]的文章
必应学术
必应学术中相似的文章
[Lu, Wang]的文章
[Chen, Yiqiang]的文章
[Wang, Jindong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。