CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Incorporating explicit syntactic dependency for aspect level sentiment classification
Ke, Wenjun1,2; Gao, Jinhua1; Shen, Huawei1,2; Cheng, Xueqi1
2021-10-07
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号456页码:394-406
摘要Aspect level sentiment classification aims to extract fine-grained sentiment expressed towards specific aspects from a sentence. The key to this task lies in connecting aspects and their respective sentiment contexts. Existing methods measure the dependency weights between aspects and context words via either the semantic similarity between words captured by attention mechanism or the structural proximity between words in syntactic structures. However, methods in both groups fail to fully exploit explicit syntactic dependency, which we argue should be critical to identify sentiment contexts. In this paper, we propose a novel syntactic-dependency-based attention network (SDATT) to incorporate explicit syntactic dependency for aspect level sentiment classification. SDATT first models the dependency path between each word and the aspect to characterize aspect-oriented syntactic representation of each word. The generated syntactic representations are later fed into the attention layer to help infer the dependency weights for sentiment prediction. Experimental results on five benchmark datasets show the superior performance of the proposed model over state-of-the-art baselines. (c) 2021 Elsevier B.V. All rights reserved.
关键词Sentiment classification Syntactic dependency Attention network
DOI10.1016/j.neucom.2021.05.078
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[62002347] ; Natural Science Foundation of China[91746301] ; Beijing Academy of Artificial Intelligence (BAAI) ; K.C. Wong Education Foundation
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000684998100017
出版者ELSEVIER
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17237
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Jinhua
作者单位1.Chinese Acad Sci, Inst Comp Technol, Data Intelligence Syst Res Ctr, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Ke, Wenjun,Gao, Jinhua,Shen, Huawei,et al. Incorporating explicit syntactic dependency for aspect level sentiment classification[J]. NEUROCOMPUTING,2021,456:394-406.
APA Ke, Wenjun,Gao, Jinhua,Shen, Huawei,&Cheng, Xueqi.(2021).Incorporating explicit syntactic dependency for aspect level sentiment classification.NEUROCOMPUTING,456,394-406.
MLA Ke, Wenjun,et al."Incorporating explicit syntactic dependency for aspect level sentiment classification".NEUROCOMPUTING 456(2021):394-406.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ke, Wenjun]的文章
[Gao, Jinhua]的文章
[Shen, Huawei]的文章
百度学术
百度学术中相似的文章
[Ke, Wenjun]的文章
[Gao, Jinhua]的文章
[Shen, Huawei]的文章
必应学术
必应学术中相似的文章
[Ke, Wenjun]的文章
[Gao, Jinhua]的文章
[Shen, Huawei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。