Institute of Computing Technology, Chinese Academy IR
Incorporating explicit syntactic dependency for aspect level sentiment classification | |
Ke, Wenjun1,2; Gao, Jinhua1; Shen, Huawei1,2; Cheng, Xueqi1 | |
2021-10-07 | |
发表期刊 | NEUROCOMPUTING |
ISSN | 0925-2312 |
卷号 | 456页码:394-406 |
摘要 | Aspect level sentiment classification aims to extract fine-grained sentiment expressed towards specific aspects from a sentence. The key to this task lies in connecting aspects and their respective sentiment contexts. Existing methods measure the dependency weights between aspects and context words via either the semantic similarity between words captured by attention mechanism or the structural proximity between words in syntactic structures. However, methods in both groups fail to fully exploit explicit syntactic dependency, which we argue should be critical to identify sentiment contexts. In this paper, we propose a novel syntactic-dependency-based attention network (SDATT) to incorporate explicit syntactic dependency for aspect level sentiment classification. SDATT first models the dependency path between each word and the aspect to characterize aspect-oriented syntactic representation of each word. The generated syntactic representations are later fed into the attention layer to help infer the dependency weights for sentiment prediction. Experimental results on five benchmark datasets show the superior performance of the proposed model over state-of-the-art baselines. (c) 2021 Elsevier B.V. All rights reserved. |
关键词 | Sentiment classification Syntactic dependency Attention network |
DOI | 10.1016/j.neucom.2021.05.078 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Natural Science Foundation of China[62002347] ; Natural Science Foundation of China[91746301] ; Beijing Academy of Artificial Intelligence (BAAI) ; K.C. Wong Education Foundation |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000684998100017 |
出版者 | ELSEVIER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/17237 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Gao, Jinhua |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Data Intelligence Syst Res Ctr, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Ke, Wenjun,Gao, Jinhua,Shen, Huawei,et al. Incorporating explicit syntactic dependency for aspect level sentiment classification[J]. NEUROCOMPUTING,2021,456:394-406. |
APA | Ke, Wenjun,Gao, Jinhua,Shen, Huawei,&Cheng, Xueqi.(2021).Incorporating explicit syntactic dependency for aspect level sentiment classification.NEUROCOMPUTING,456,394-406. |
MLA | Ke, Wenjun,et al."Incorporating explicit syntactic dependency for aspect level sentiment classification".NEUROCOMPUTING 456(2021):394-406. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论