CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Wild Animal Information Collection Based on Depthwise Separable Convolution in Software Defined IoT Networks
Cao, Qinghua1; Yu, Lisu1,2; Wang, Zhen1; Zhan, Shanjun1; Quan, Hao1; Yu, Yan3; Khan, Zahid4; Koubaa, Anis4
2021-09-01
发表期刊ELECTRONICS
卷号10期号:17页码:16
摘要The wild animal information collection based on the wireless sensor network (WSN) has an enormous number of applications, as demonstrated in the literature. Yet, it has many problems, such as low information density and high energy consumption ratio. The traditional Internet of Things (IoT) system has characteristics of limited resources and task specificity. Therefore, we introduce an improved deep neural network (DNN) structure to solve task specificity. In addition, we determine a programmability idea of software-defined network (SDN) to solve the problems of high energy consumption ratio and low information density brought about by low autonomy of equipment. By introducing some advanced network structures, such as attention mechanism, residuals, depthwise (DW) convolution, pointwise (PW) convolution, spatial pyramid pooling (SPP), and feature pyramid networks (FPN), a lightweight object detection network with a fast response is designed. Meanwhile, the concept of control plane and data plane in SDN is introduced, and nodes are divided into different types to facilitate intelligent wake-up, thereby realizing high-precision detection and high information density of the detection system. The results show that the proposed scheme can improve the detection response speed and reduce the model parameters while ensuring detection accuracy in the software-defined IoT networks.
关键词information collection internet of things deep neural network SDN object detection
DOI10.3390/electronics10172091
收录类别SCI
语种英语
资助项目National Science Foundation of China (NSFC)[62161024] ; State Key Laboratory of Computer Architecture (ICT, CAS) Open Project[CARCHB202019] ; China Postdoctoral Science Foundation[2021TQ0136] ; Training Program of Innovation and Entrepreneurship for Undergraduates in Nanchang University[2020CX234] ; Training Program of Innovation and Entrepreneurship for Undergraduates in Nanchang University[2020CX236] ; Student Research Training Program (SRTP) in Nanchang University[5258] ; Student Research Training Program (SRTP) in Nanchang University[5259] ; Prince Sultan University, Saudi Arabia
WOS研究方向Computer Science ; Engineering ; Physics
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Physics, Applied
WOS记录号WOS:000695553200001
出版者MDPI
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17192
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yu, Lisu; Wang, Zhen
作者单位1.Nanchang Univ, Sch Informat Engn, Nanchang 330031, Jiangxi, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
3.Jingdezhen Ceram Univ, Sch Informat Engn, Jingdezhen 333403, Peoples R China
4.Prince Sultan Univ, Coll Comp & Informat Sci, Riyadh 11586, Saudi Arabia
推荐引用方式
GB/T 7714
Cao, Qinghua,Yu, Lisu,Wang, Zhen,et al. Wild Animal Information Collection Based on Depthwise Separable Convolution in Software Defined IoT Networks[J]. ELECTRONICS,2021,10(17):16.
APA Cao, Qinghua.,Yu, Lisu.,Wang, Zhen.,Zhan, Shanjun.,Quan, Hao.,...&Koubaa, Anis.(2021).Wild Animal Information Collection Based on Depthwise Separable Convolution in Software Defined IoT Networks.ELECTRONICS,10(17),16.
MLA Cao, Qinghua,et al."Wild Animal Information Collection Based on Depthwise Separable Convolution in Software Defined IoT Networks".ELECTRONICS 10.17(2021):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cao, Qinghua]的文章
[Yu, Lisu]的文章
[Wang, Zhen]的文章
百度学术
百度学术中相似的文章
[Cao, Qinghua]的文章
[Yu, Lisu]的文章
[Wang, Zhen]的文章
必应学术
必应学术中相似的文章
[Cao, Qinghua]的文章
[Yu, Lisu]的文章
[Wang, Zhen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。