Institute of Computing Technology, Chinese Academy IR
FangNet: Mining herb hidden knowledge from TCM clinical effective formulas using structure network algorithm | |
Bu, Dechao2; Xia, Yan1; Zhang, JiaYuan1; Cao, Wanchen1; Huo, Peipei3; Wang, Zhihao3; He, Zihao1; Ding, Linyi1; Wu, Yang2; Zhang, Shan3; Gao, Kai1; Yu, He1; Liu, Tiegang1; Ding, Xia1; Gu, Xiaohong1; Zhao, Yi1,2 | |
2021 | |
发表期刊 | COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL |
ISSN | 2001-0370 |
卷号 | 19页码:62-71 |
摘要 | The use of herbs to treat various human diseases has been recorded for thousands of years. In Asia's current medical system, numerous herbal formulas have been repeatedly verified to confirm their effectiveness in different periods, which is a great resource for drug innovation and discovery. Through the mining of these clinical effective formulas by network pharmacology and bioinformatics analysis, important biologically active ingredients derived from these natural products might be discovered. As modern medicine requires a combination of multiple drugs for the treatment of complex diseases, previously clinical formulas are also combinations of various herbs according to the main causes and accompanying symptoms. However, the herbs that play a major role in the treatment of diseases are always unclear. Therefore, how to rank each herb's relative importance and determine the core herbs, is the first step to assisting herb selection for active ingredients discovery. To solve this problem, we built the platform FangNet, which ranks all herbs on their relative topological importance using the PageRank algorithm, based on the constructed symptom-herb network from a collection of clinical empirical prescriptions. Three types of herb hidden knowledge, including herb importance rank, herb-herb co-occurrence, and associations to symptoms, were provided in an interactive visualization. Moreover, FangNet has designed role-based permission for teams to store, analyze, and jointly interpret their clinical formulas, in an easy and secure collaboration environment, aiming at creating a central hub for massive symptom-herb connections. FangNet can be accessed at http://fangnet.org or http://fangnet.herb.ac.cn. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. |
关键词 | Formulas Herb Symptom TCM |
DOI | 10.1016/j.csbj.2020.11.036 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2018YFC1704100] ; National Key R&D Program of China[2019YFC1709801] ; National Natural Science Foundation for Young Scholars of China[31701149] ; National Natural Science Foundation for Young Scholars of China[31701141] ; National Natural Science Foundation of China[31672126] ; National Natural Science Foundation of China[32070670] ; National Natural Science Foundation of Zhejiang Province[LY20C060001] ; National Natural Science Foundation of Zhejiang Province[LY21C060003] |
WOS研究方向 | Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology |
WOS类目 | Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology |
WOS记录号 | WOS:000692605200005 |
出版者 | ELSEVIER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/17168 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Ding, Xia; Gu, Xiaohong; Zhao, Yi |
作者单位 | 1.Beijing Univ Chinese Med, Beijing 100029, Peoples R China 2.Chinese Acad Sci, Adv Comp Res Ctr, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, Luoyang Branch, Luoyang, Peoples R China |
推荐引用方式 GB/T 7714 | Bu, Dechao,Xia, Yan,Zhang, JiaYuan,et al. FangNet: Mining herb hidden knowledge from TCM clinical effective formulas using structure network algorithm[J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL,2021,19:62-71. |
APA | Bu, Dechao.,Xia, Yan.,Zhang, JiaYuan.,Cao, Wanchen.,Huo, Peipei.,...&Zhao, Yi.(2021).FangNet: Mining herb hidden knowledge from TCM clinical effective formulas using structure network algorithm.COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL,19,62-71. |
MLA | Bu, Dechao,et al."FangNet: Mining herb hidden knowledge from TCM clinical effective formulas using structure network algorithm".COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL 19(2021):62-71. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论