CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Location Sensitive Network for Human Instance Segmentation
Zhang, Xiangzhou1; Ma, Bingpeng2; Chang, Hong2,3; Shan, Shiguang3,4; Chen, Xilin2,3
2021
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号30页码:7649-7662
摘要Location is an important distinguishing information for instance segmentation. In this paper, we propose a novel model, called Location Sensitive Network (LSNet), for human instance segmentation. LSNet integrates instance-specific location information into one-stage segmentation framework. Specifically, in the segmentation branch, Pose Attention Module (PAM) encodes the location information into the attention regions through coordinates encoding. Based on the location information provided by PAM, the segmentation branch is able to effectively distinguish instances in feature-level. Moreover, we propose a combination operation named Keypoints Sensitive Combination (KSCom) to utilize the location information from multiple sampling points. These sampling points construct the points representation for instances via human keypoints and random points. Human keypoints provide the spatial locations and semantic information of the instances, and random points expand the receptive fields. Based on the points representation for each instance, KSCom effectively reduces the mis-classified pixels. Our method is validated by the experiments on public datasets. LSNet-5 achieves 56.2 mAP at 18.5 FPS on COCOPersons. Besides, the proposed method is significantly superior to its peers in the case of severe occlusion.
关键词Image segmentation Prototypes Heating systems Task analysis Semantics Feature extraction Detectors Human instance segmentation spatial invariance coordinates encoding points representation
DOI10.1109/TIP.2021.3107210
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFA0700800] ; Natural Science Foundation of China (NSFC)[61876171] ; Natural Science Foundation of China (NSFC)[61976203]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000693758500010
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17149
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ma, Bingpeng
作者单位1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Chinese Acad Sci CAS, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
4.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai 200031, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Xiangzhou,Ma, Bingpeng,Chang, Hong,et al. Location Sensitive Network for Human Instance Segmentation[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30:7649-7662.
APA Zhang, Xiangzhou,Ma, Bingpeng,Chang, Hong,Shan, Shiguang,&Chen, Xilin.(2021).Location Sensitive Network for Human Instance Segmentation.IEEE TRANSACTIONS ON IMAGE PROCESSING,30,7649-7662.
MLA Zhang, Xiangzhou,et al."Location Sensitive Network for Human Instance Segmentation".IEEE TRANSACTIONS ON IMAGE PROCESSING 30(2021):7649-7662.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Xiangzhou]的文章
[Ma, Bingpeng]的文章
[Chang, Hong]的文章
百度学术
百度学术中相似的文章
[Zhang, Xiangzhou]的文章
[Ma, Bingpeng]的文章
[Chang, Hong]的文章
必应学术
必应学术中相似的文章
[Zhang, Xiangzhou]的文章
[Ma, Bingpeng]的文章
[Chang, Hong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。