Institute of Computing Technology, Chinese Academy IR
Location Sensitive Network for Human Instance Segmentation | |
Zhang, Xiangzhou1; Ma, Bingpeng2; Chang, Hong2,3; Shan, Shiguang3,4; Chen, Xilin2,3 | |
2021 | |
发表期刊 | IEEE TRANSACTIONS ON IMAGE PROCESSING |
ISSN | 1057-7149 |
卷号 | 30页码:7649-7662 |
摘要 | Location is an important distinguishing information for instance segmentation. In this paper, we propose a novel model, called Location Sensitive Network (LSNet), for human instance segmentation. LSNet integrates instance-specific location information into one-stage segmentation framework. Specifically, in the segmentation branch, Pose Attention Module (PAM) encodes the location information into the attention regions through coordinates encoding. Based on the location information provided by PAM, the segmentation branch is able to effectively distinguish instances in feature-level. Moreover, we propose a combination operation named Keypoints Sensitive Combination (KSCom) to utilize the location information from multiple sampling points. These sampling points construct the points representation for instances via human keypoints and random points. Human keypoints provide the spatial locations and semantic information of the instances, and random points expand the receptive fields. Based on the points representation for each instance, KSCom effectively reduces the mis-classified pixels. Our method is validated by the experiments on public datasets. LSNet-5 achieves 56.2 mAP at 18.5 FPS on COCOPersons. Besides, the proposed method is significantly superior to its peers in the case of severe occlusion. |
关键词 | Image segmentation Prototypes Heating systems Task analysis Semantics Feature extraction Detectors Human instance segmentation spatial invariance coordinates encoding points representation |
DOI | 10.1109/TIP.2021.3107210 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2017YFA0700800] ; Natural Science Foundation of China (NSFC)[61876171] ; Natural Science Foundation of China (NSFC)[61976203] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000693758500010 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/17149 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Ma, Bingpeng |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, Chinese Acad Sci CAS, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 4.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai 200031, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Xiangzhou,Ma, Bingpeng,Chang, Hong,et al. Location Sensitive Network for Human Instance Segmentation[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30:7649-7662. |
APA | Zhang, Xiangzhou,Ma, Bingpeng,Chang, Hong,Shan, Shiguang,&Chen, Xilin.(2021).Location Sensitive Network for Human Instance Segmentation.IEEE TRANSACTIONS ON IMAGE PROCESSING,30,7649-7662. |
MLA | Zhang, Xiangzhou,et al."Location Sensitive Network for Human Instance Segmentation".IEEE TRANSACTIONS ON IMAGE PROCESSING 30(2021):7649-7662. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论