CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Graph Regularized Encoder-Decoder Networks for Image Representation Learning
Yang, Shijie1,2; Li, Liang3; Wang, Shuhui3; Zhang, Weigang4,5; Huang, Qingming3; Tian, Qi6
2021
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
卷号23页码:3124-3136
摘要Image representation learning with encoder-decoder networks plays a fundamental role in multimedia processing. Recent findings show that traditional encoder-decoders can be negatively affected by small visual perturbations. The learned non-smooth feature embedding cannot guarantee to capture semantic-meaningful geometric distance between visually-similar image samples. Inspired by manifold learning, we propose a graph regularized encoder-decoder network, which can preserve local geometric information of the code embedding space. More discriminative feature embedding is learnt to attain both high-level image semantic and neighbor relationship of image clusters. The proposed graph regularizer is formulated upon multi-layer perceptions. It uses the local invariance principle to explicitly reconstruct the geometric similarity graph. Theoretical analysis is provided to show the connection between our deep regularizer and traditional graph Laplacian regularizer. Practically, the network complexity is alleviated by anchor based bipartite graph, and this leverages our method into large scale scenario. Experimental evaluations show the comparable results of the proposed method with state-of-the-art models on different tasks.
关键词Laplace equations Visualization Manifolds Image reconstruction Task analysis Decoding Semantics Auto-encoder encoder-decoder graph regularizer image representation learning
DOI10.1109/TMM.2020.3020697
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2018YFE0303104] ; National Natural Science Foundation of China[61771457] ; National Natural Science Foundation of China[61732007] ; National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61931008] ; National Natural Science Foundation of China[61772494] ; National Natural Science Foundation of China[61836002] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013]
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:000698902000014
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17072
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Liang
作者单位1.Univ Chinese Acad Sci UCAS, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
2.UCAS, Key Lab Big Data Min & Knowledge Management, Beijing 101408, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
4.Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China
5.Chinese Acad Sci, Univ Chinese Acad Sci, Beijing 100049, Peoples R China
6.Huawei Noahs Ark Lab, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Yang, Shijie,Li, Liang,Wang, Shuhui,et al. Graph Regularized Encoder-Decoder Networks for Image Representation Learning[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2021,23:3124-3136.
APA Yang, Shijie,Li, Liang,Wang, Shuhui,Zhang, Weigang,Huang, Qingming,&Tian, Qi.(2021).Graph Regularized Encoder-Decoder Networks for Image Representation Learning.IEEE TRANSACTIONS ON MULTIMEDIA,23,3124-3136.
MLA Yang, Shijie,et al."Graph Regularized Encoder-Decoder Networks for Image Representation Learning".IEEE TRANSACTIONS ON MULTIMEDIA 23(2021):3124-3136.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Shijie]的文章
[Li, Liang]的文章
[Wang, Shuhui]的文章
百度学术
百度学术中相似的文章
[Yang, Shijie]的文章
[Li, Liang]的文章
[Wang, Shuhui]的文章
必应学术
必应学术中相似的文章
[Yang, Shijie]的文章
[Li, Liang]的文章
[Wang, Shuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。