CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
IAUnet: Global Context-Aware Feature Learning for Person Reidentification
Hou, Ruibing1,2; Ma, Bingpeng2; Chang, Hong1,2; Gu, Xinqian1,2; Shan, Shiguang1,2,3; Chen, Xilin1,2
2021-10-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
卷号32期号:10页码:4460-4474
摘要Person reidentification (reID) by convolutional neural network (CNN)-based networks has achieved favorable performance in recent years. However, most of existing CNN-based methods do not take full advantage of spatial-temporal context modeling. In fact, the global spatial-temporal context can greatly clarify local distractions to enhance the target feature representation. To comprehensively leverage the spatial-temporal context information, in this work, we present a novel block, interaction-aggregation-update (IAU), for high-performance person reID. First, the spatial-temporal IAU (STIAU) module is introduced. STIAU jointly incorporates two types of contextual interactions into a CNN framework for target feature learning. Here, the spatial interactions learn to compute the contextual dependencies between different body parts of a single frame, while the temporal interactions are used to capture the contextual dependencies between the same body parts across all frames. Furthermore, a channel IAU (CIAU) module is designed to model the semantic contextual interactions between channel features to enhance the feature representation, especially for small-scale visual cues and body parts. Therefore, the IAU block enables the feature to incorporate the globally spatial, temporal, and channel context. It is lightweight, end-to-end trainable, and can be easily plugged into existing CNNs to form IAUnet. The experiments show that IAUnet performs favorably against state of the art on both image and video reID tasks and achieves compelling results on a general object categorization task. The source code is available at https://github.com/blue-blue272/ImgReID-IAnet.
关键词Context modeling Feature extraction Computational modeling Semantics Aggregates Visualization Task analysis Feature enhancing interaction-aggregation person reidentification (reID) spatial-temporal context modeling
DOI10.1109/TNNLS.2020.3017939
收录类别SCI
语种英语
资助项目Natural Science Foundation of China (NSFC)[61732004] ; Natural Science Foundation of China (NSFC)[61876171] ; Natural Science Foundation of China (NSFC)[61976203] ; Fundamental Research Funds for the Central Universities
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000704111000018
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:38[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/17020
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ma, Bingpeng
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
3.CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai 200031, Peoples R China
推荐引用方式
GB/T 7714
Hou, Ruibing,Ma, Bingpeng,Chang, Hong,et al. IAUnet: Global Context-Aware Feature Learning for Person Reidentification[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2021,32(10):4460-4474.
APA Hou, Ruibing,Ma, Bingpeng,Chang, Hong,Gu, Xinqian,Shan, Shiguang,&Chen, Xilin.(2021).IAUnet: Global Context-Aware Feature Learning for Person Reidentification.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,32(10),4460-4474.
MLA Hou, Ruibing,et al."IAUnet: Global Context-Aware Feature Learning for Person Reidentification".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 32.10(2021):4460-4474.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hou, Ruibing]的文章
[Ma, Bingpeng]的文章
[Chang, Hong]的文章
百度学术
百度学术中相似的文章
[Hou, Ruibing]的文章
[Ma, Bingpeng]的文章
[Chang, Hong]的文章
必应学术
必应学术中相似的文章
[Hou, Ruibing]的文章
[Ma, Bingpeng]的文章
[Chang, Hong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。