CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Toward Efficient Execution of Mainstream Deep Learning Frameworks on Mobile Devices: Architectural Implications
Dai, Yuting1,2,3; Zhang, Rui2,4; Xue, Rui2,5; Liu, Benyong3; Li, Tao2
2021-03-01
发表期刊IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
ISSN0278-0070
卷号40期号:3页码:453-466
摘要In recent years, continuous growing interests have been seen in bringing artificial intelligence capabilities to mobile devices. However, the related work still faces several issues, such as constrained computation and memory resources, power drain, and thermal limitation. To develop deep learning (DL) algorithms on mobile devices, we need to understand their behaviors. In this article, we explore the architectural behaviors of some mainstream DL frameworks on mobile devices by performing a comprehensive characterization of performance, accuracy, energy efficiency, and thermal behaviors. We experimentally choose four model compression methods to perform on networks and in addition, analyze the related impact on the nodes amount, memory, execution time, model size, inference time, energy consumption, and thermal distribution. With insights into DL-based mobile application characteristics, we hope to guide the design of future smartphone platforms for lower energy consumption.
关键词Deep learning Mobile handsets Performance evaluation Mobile applications Computational modeling Quantization (signal) Central Processing Unit CPU usage deep learning (DL) energy efficiency microarchitecture mobile phone network compression thermal characterization
DOI10.1109/TCAD.2020.3003233
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号WOS:000621402700005
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16904
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Dai, Yuting
作者单位1.Chengdu Normal Univ, Sch Comp Sci, Chengdu 610041, Peoples R China
2.Univ Florida, Dept ECE, Gainesville, FL 32611 USA
3.Guizhou Univ, Coll Comp Sci & Technol, Guiyang 550025, Peoples R China
4.Nankai Univ, Coll Comp Sci, Tianjin 300071, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Dai, Yuting,Zhang, Rui,Xue, Rui,et al. Toward Efficient Execution of Mainstream Deep Learning Frameworks on Mobile Devices: Architectural Implications[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2021,40(3):453-466.
APA Dai, Yuting,Zhang, Rui,Xue, Rui,Liu, Benyong,&Li, Tao.(2021).Toward Efficient Execution of Mainstream Deep Learning Frameworks on Mobile Devices: Architectural Implications.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,40(3),453-466.
MLA Dai, Yuting,et al."Toward Efficient Execution of Mainstream Deep Learning Frameworks on Mobile Devices: Architectural Implications".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 40.3(2021):453-466.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dai, Yuting]的文章
[Zhang, Rui]的文章
[Xue, Rui]的文章
百度学术
百度学术中相似的文章
[Dai, Yuting]的文章
[Zhang, Rui]的文章
[Xue, Rui]的文章
必应学术
必应学术中相似的文章
[Dai, Yuting]的文章
[Zhang, Rui]的文章
[Xue, Rui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。