CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning diffusion model-free and efficient influence function for influence maximization from information cascades
Cao, Qi1,2; Shen, Huawei1,2; Gao, Jinhua1; Cheng, Xueqi1
2021-03-19
发表期刊KNOWLEDGE AND INFORMATION SYSTEMS
ISSN0219-1377
页码24
摘要When considering the problem of influence maximization from information cascades, one essential component is influence estimation. Traditional approaches for influence estimation generally follow a two-stage framework, i.e., learn a hypothetical diffusion model from information cascades and then calculate the influence spread according to the learned diffusion model via Monte Carlo simulation or heuristic approximation. The effectiveness of these approaches heavily relies on the correctness of the diffusion model, suffering from the problem of model misspecification. Meanwhile, these approaches are inefficient when influence estimation is conducted via lots of Monte Carlo simulations. In this paper, without assuming a diffusion model a priori, we directly learn a monotone and submodular influence function from information cascades. Once the influence function is obtained, greedy algorithm is applied to efficiently solve influence maximization. Experimental results on both synthetic and real-world datasets show the effectiveness and efficiency of the learned influence function for both influence estimation and influence maximization tasks.
关键词Influence function learning Influence maximization Information cascades Social network
DOI10.1007/s10115-021-01556-6
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[91746301] ; National Natural Science Foundation of China[62041207] ; National Natural Science Foundation of China[61472400] ; National Natural Science Foundation of China[61425016] ; K.C. Wong Education Foundation
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:000630644700001
出版者SPRINGER LONDON LTD
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16881
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shen, Huawei
作者单位1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Cao, Qi,Shen, Huawei,Gao, Jinhua,et al. Learning diffusion model-free and efficient influence function for influence maximization from information cascades[J]. KNOWLEDGE AND INFORMATION SYSTEMS,2021:24.
APA Cao, Qi,Shen, Huawei,Gao, Jinhua,&Cheng, Xueqi.(2021).Learning diffusion model-free and efficient influence function for influence maximization from information cascades.KNOWLEDGE AND INFORMATION SYSTEMS,24.
MLA Cao, Qi,et al."Learning diffusion model-free and efficient influence function for influence maximization from information cascades".KNOWLEDGE AND INFORMATION SYSTEMS (2021):24.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
[Gao, Jinhua]的文章
百度学术
百度学术中相似的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
[Gao, Jinhua]的文章
必应学术
必应学术中相似的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
[Gao, Jinhua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。