Institute of Computing Technology, Chinese Academy IR
Learning diffusion model-free and efficient influence function for influence maximization from information cascades | |
Cao, Qi1,2; Shen, Huawei1,2; Gao, Jinhua1; Cheng, Xueqi1 | |
2021-03-19 | |
发表期刊 | KNOWLEDGE AND INFORMATION SYSTEMS |
ISSN | 0219-1377 |
页码 | 24 |
摘要 | When considering the problem of influence maximization from information cascades, one essential component is influence estimation. Traditional approaches for influence estimation generally follow a two-stage framework, i.e., learn a hypothetical diffusion model from information cascades and then calculate the influence spread according to the learned diffusion model via Monte Carlo simulation or heuristic approximation. The effectiveness of these approaches heavily relies on the correctness of the diffusion model, suffering from the problem of model misspecification. Meanwhile, these approaches are inefficient when influence estimation is conducted via lots of Monte Carlo simulations. In this paper, without assuming a diffusion model a priori, we directly learn a monotone and submodular influence function from information cascades. Once the influence function is obtained, greedy algorithm is applied to efficiently solve influence maximization. Experimental results on both synthetic and real-world datasets show the effectiveness and efficiency of the learned influence function for both influence estimation and influence maximization tasks. |
关键词 | Influence function learning Influence maximization Information cascades Social network |
DOI | 10.1007/s10115-021-01556-6 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[91746301] ; National Natural Science Foundation of China[62041207] ; National Natural Science Foundation of China[61472400] ; National Natural Science Foundation of China[61425016] ; K.C. Wong Education Foundation |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems |
WOS记录号 | WOS:000630644700001 |
出版者 | SPRINGER LONDON LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/16881 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Shen, Huawei |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing, Peoples R China 2.Univ Chinese Acad Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Cao, Qi,Shen, Huawei,Gao, Jinhua,et al. Learning diffusion model-free and efficient influence function for influence maximization from information cascades[J]. KNOWLEDGE AND INFORMATION SYSTEMS,2021:24. |
APA | Cao, Qi,Shen, Huawei,Gao, Jinhua,&Cheng, Xueqi.(2021).Learning diffusion model-free and efficient influence function for influence maximization from information cascades.KNOWLEDGE AND INFORMATION SYSTEMS,24. |
MLA | Cao, Qi,et al."Learning diffusion model-free and efficient influence function for influence maximization from information cascades".KNOWLEDGE AND INFORMATION SYSTEMS (2021):24. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论