CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Deep video code for efficient face video retrieval
Qiao, Shishi1,2; Wang, Ruiping1,2; Shan, Shiguang1,2; Chen, Xilin1,2
2021-05-01
发表期刊PATTERN RECOGNITION
ISSN0031-3203
卷号113页码:11
摘要In this paper, we address one specific video retrieval problem in terms of human face. Given one query in forms of either a frame or a sequence from a person, we search the database and return the most relevant face videos, i.e., ones have the same class label with the query. Such problem is very challenging due to the large intra-class variations and the high request on the efficiency of video representations in terms of both time and space. To handle such challenges, this paper proposes a novel Deep Video Code (DVC) method which encodes video faces into compact binary codes. Specifically, we devise an end-to end convolutional neural network (CNN) framework that takes face videos as training inputs, models each of them as a unified representation by temporal feature pooling operation, and finally projects the high dimensional representations of both frames and videos into Hamming space to generate binary codes. In such Hamming space, distance of dissimilar pairs is larger than that of similar pairs by a margin. To this end, a novel bounded triplet hashing loss is elaborately designed, which takes all dissimilar pairs into consideration for each anchor point in a mini-batch, and the optimization of the loss function is smoother and more stable. Extensive experiments on challenging video face databases and general image/video datasets with comparison to the state-of-the-arts verify the effectiveness of our method in different kinds of retrieval scenarios. (c) 2020 Elsevier Ltd. All rights reserved.
关键词Face video retrieval Temporal feature pooling Bounded triplet loss Deep video code Hash learning
DOI10.1016/j.patcog.2020.107754
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[61922080] ; Natural Science Foundation of China[U19B2036] ; Natural Science Foundation of China[61772500] ; CAS Frontier Science Key Research Project[QYZDJ-SSWJSC009] ; Beijing Academy of Artificial Intelligence[BAAI2020ZJ0201]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000626268400007
出版者ELSEVIER SCI LTD
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16739
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Ruiping
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Qiao, Shishi,Wang, Ruiping,Shan, Shiguang,et al. Deep video code for efficient face video retrieval[J]. PATTERN RECOGNITION,2021,113:11.
APA Qiao, Shishi,Wang, Ruiping,Shan, Shiguang,&Chen, Xilin.(2021).Deep video code for efficient face video retrieval.PATTERN RECOGNITION,113,11.
MLA Qiao, Shishi,et al."Deep video code for efficient face video retrieval".PATTERN RECOGNITION 113(2021):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiao, Shishi]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
百度学术
百度学术中相似的文章
[Qiao, Shishi]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
必应学术
必应学术中相似的文章
[Qiao, Shishi]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。