CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing
Jia, Yunpei1,2; Zhang, Jie1,2; Shan, Shiguang1,2,3; Chen, Xilin1,2
2021-07-01
发表期刊PATTERN RECOGNITION
ISSN0031-3203
卷号115页码:13
摘要Due to the environmental differences, many face anti-spoofing methods fail to generalize to unseen scenarios. In light of this, we propose a unified unsupervised and semi-supervised domain adaptation network (USDAN) for cross-scenario face anti-spoofing, aiming at minimizing the distribution discrepancy between the source and the target domains. Specifically, two modules, i.e., marginal distribution alignment module (MDA) and conditional distribution alignment module (CDA), are designed to seek a domain-invariant feature space via adversarial learning and make the features of the same class compact, respectively. By adding/removing the CDA module, the network can be easily switched for semisupervised/unsupervised setting, in which sense our method is named with & ldquo;unified & rdquo;. Moreover, the adaptive cross-entropy loss and normalization techniques are further incorporated to improve the generalization. Extensive experimental results show that the proposed USDAN outperforms state-of-the-art methods on several public datasets. (c) 2021 Elsevier Ltd. All rights reserved.
关键词Face anti-spoofing Face presentation attack detection Domain adaptation Deep learning
DOI10.1016/j.patcog.2021.107888
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2018AAA0102402] ; Natural Science Foundation of China[61806188]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000639745600001
出版者ELSEVIER SCI LTD
引用统计
被引频次:39[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16681
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shan, Shiguang
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Chinese Acad Sci CAS, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai 200031, Peoples R China
推荐引用方式
GB/T 7714
Jia, Yunpei,Zhang, Jie,Shan, Shiguang,et al. Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing[J]. PATTERN RECOGNITION,2021,115:13.
APA Jia, Yunpei,Zhang, Jie,Shan, Shiguang,&Chen, Xilin.(2021).Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing.PATTERN RECOGNITION,115,13.
MLA Jia, Yunpei,et al."Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing".PATTERN RECOGNITION 115(2021):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jia, Yunpei]的文章
[Zhang, Jie]的文章
[Shan, Shiguang]的文章
百度学术
百度学术中相似的文章
[Jia, Yunpei]的文章
[Zhang, Jie]的文章
[Shan, Shiguang]的文章
必应学术
必应学术中相似的文章
[Jia, Yunpei]的文章
[Zhang, Jie]的文章
[Shan, Shiguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。