CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Feature Rescaling and Fusion for Tiny Object Detection
Liu, Jingwei1,2; Gu, Yi3; Han, Shumin3; Zhang, Zhibin1; Guo, Jiafeng1; Cheng, Xueqi1
2021
发表期刊IEEE ACCESS
ISSN2169-3536
卷号9页码:62946-62955
摘要Recent years have witnessed rapid developments on computer vision, however, there are still challenges in detecting tiny objects in a large-scale background. The tiny objects knowledge become sparse and weak due to their tiny size, which makes the tiny objects difficult to be detected with the common approaches. In this paper, a new network named Specific Characteristics based Feature Rescaling and Fusion (SFRF) is designed to detect tiny persons in a broad horizon and massive background. Different from the methods in general, a Nonparametric Adaptive Dense Perceiving Algorithm (NADPA) is designed to automatically select and generate a new resized feature map with the high density distribution of tiny objects. Then, a method called Many-For-One strategy is used for feature fusion of the feature pyramid network (FPN) layers to improve the feature representation and detection. Finally, an ensemble model method named hierarchical Coarse-to-fine mechanism is designed based on the proposed methods to further improve the performance. The experiments demonstrate that the proposed approach achieves an obvious performance improvement on tiny object detection than the existing approaches, and our approach has been awarded as the 1st-place in the first large-scale Tiny Object Detection (TOD) challenge.
关键词Feature extraction Object detection Semantics Task analysis Training Spatial resolution Shape Tiny object detection nonparametric adaptive selection feature fusion feature pyramid network ensemble model
DOI10.1109/ACCESS.2021.3074790
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000645861200001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16676
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Han, Shumin; Cheng, Xueqi
作者单位1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Baidu Online Network Technol Beijing Co Ltd, Beijing 100085, Peoples R China
推荐引用方式
GB/T 7714
Liu, Jingwei,Gu, Yi,Han, Shumin,et al. Feature Rescaling and Fusion for Tiny Object Detection[J]. IEEE ACCESS,2021,9:62946-62955.
APA Liu, Jingwei,Gu, Yi,Han, Shumin,Zhang, Zhibin,Guo, Jiafeng,&Cheng, Xueqi.(2021).Feature Rescaling and Fusion for Tiny Object Detection.IEEE ACCESS,9,62946-62955.
MLA Liu, Jingwei,et al."Feature Rescaling and Fusion for Tiny Object Detection".IEEE ACCESS 9(2021):62946-62955.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Jingwei]的文章
[Gu, Yi]的文章
[Han, Shumin]的文章
百度学术
百度学术中相似的文章
[Liu, Jingwei]的文章
[Gu, Yi]的文章
[Han, Shumin]的文章
必应学术
必应学术中相似的文章
[Liu, Jingwei]的文章
[Gu, Yi]的文章
[Han, Shumin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。