CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Exploiting bi-directional global transition patterns and personal preferences for missing POI category identification
Xi, Dongbo1,3; Zhuang, Fuzhen1,2; Liu, Yanchi5; Zhu, Hengshu6; Zhao, Pengpeng7; Tan, Chang8; He, Qing1,4
2020-12-01
发表期刊NEURAL NETWORKS
ISSN0893-6080
卷号132页码:75-83
摘要Recent years have witnessed the increasing popularity of Location-based Social Network (LBSN) services, which provides unparalleled opportunities to build personalized Point-of-Interest (POI) recommender systems. Existing POI recommendation and location prediction tasks utilize past in-formation for future recommendation or prediction from a single direction perspective, while the missing POI category identification task needs to utilize the check-in information both before and after the missing category. Therefore, a long-standing challenge is how to effectively identify the missing POI categories at any time in the real-world check-in data of mobile users. To this end, in this paper, we propose a novel neural network approach to identify the missing POI categories by integrating both bi-directional global non-personal transition patterns and personal preferences of users. Specifically, we delicately design an attention matching cell to model how well the check-in category information matches their non-personal transition patterns and personal preferences. Finally, we evaluate our model on two real-world datasets, which clearly validate its effectiveness compared with the state-of-the-art baselines. Furthermore, our model can be naturally extended to address next POI category recommendation and prediction tasks with competitive performance. (c) 2020 Elsevier Ltd. All rights reserved.
关键词Global transition patterns Personal preferences Missing POI category identification
DOI10.1016/j.neunet.2020.08.015
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018YFB1004300] ; National Natural Science Foundation of China[U1836206] ; National Natural Science Foundation of China[U1811461] ; National Natural Science Foundation of China[61773361] ; Project of Youth Innovation Promotion Association CAS, China[2017146]
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000590619800007
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16537
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhuang, Fuzhen
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Xiamen Data Intelligence Acad, ICT, Xiamen, Peoples R China
3.Meituan Dianping Grp, Beijing, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
5.Rutgers State Univ, Management Sci & Informat Syst, New Brunswick, NJ USA
6.Baidu Inc, Beijing, Peoples R China
7.Soochow Univ, Suzhou, Peoples R China
8.IFLYTEK, Hefei, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Xi, Dongbo,Zhuang, Fuzhen,Liu, Yanchi,et al. Exploiting bi-directional global transition patterns and personal preferences for missing POI category identification[J]. NEURAL NETWORKS,2020,132:75-83.
APA Xi, Dongbo.,Zhuang, Fuzhen.,Liu, Yanchi.,Zhu, Hengshu.,Zhao, Pengpeng.,...&He, Qing.(2020).Exploiting bi-directional global transition patterns and personal preferences for missing POI category identification.NEURAL NETWORKS,132,75-83.
MLA Xi, Dongbo,et al."Exploiting bi-directional global transition patterns and personal preferences for missing POI category identification".NEURAL NETWORKS 132(2020):75-83.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xi, Dongbo]的文章
[Zhuang, Fuzhen]的文章
[Liu, Yanchi]的文章
百度学术
百度学术中相似的文章
[Xi, Dongbo]的文章
[Zhuang, Fuzhen]的文章
[Liu, Yanchi]的文章
必应学术
必应学术中相似的文章
[Xi, Dongbo]的文章
[Zhuang, Fuzhen]的文章
[Liu, Yanchi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。