CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Deep Look into neural ranking models for information retrieval
Guo, Jiafeng1,2; Fan, Yixing1,2; Pang, Liang1,2; Yang, Liu3; Ai, Qingyao3; Zamani, Hamed3; Wu, Chen1,2; Croft, W. Bruce3; Cheng, Xueqi1,2
2020-11-01
发表期刊INFORMATION PROCESSING & MANAGEMENT
ISSN0306-4573
卷号57期号:6页码:20
摘要Ranking models lie at the heart of research on information retrieval (IR). During the past decades, different techniques have been proposed for constructing ranking models, from traditional heuristic methods, probabilistic methods, to modern machine learning methods. Recently, with the advance of deep learning technology, we have witnessed a growing body of work in applying shallow or deep neural networks to the ranking problem in IR, referred to as neural ranking models in this paper. The power of neural ranking models lies in the ability to learn from the raw text inputs for the ranking problem to avoid many limitations of hand-crafted features. Neural networks have sufficient capacity to model complicated tasks, which is needed to handle the complexity of relevance estimation in ranking. Since there have been a large variety of neural ranking models proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we will take a deep look into the neural ranking models from different dimensions to analyze their underlying assumptions, major design principles, and learning strategies. We compare these models through benchmark tasks to obtain a comprehensive empirical understanding of the existing techniques. We will also discuss what is missing in the current literature and what are the promising and desired future directions.
关键词Neural ranking model Information retrieval Survey
DOI10.1016/j.ipm.2019.102067
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[61425016] ; National Natural Science Foundation of China (NSFC)[61722211] ; Youth Innovation Promotion Association CAS[20144310] ; UMass Amherst Center for Intelligent Information Retrieval ; NSF[IIS-1715095]
WOS研究方向Computer Science ; Information Science & Library Science
WOS类目Computer Science, Information Systems ; Information Science & Library Science
WOS记录号WOS:000582206800010
出版者ELSEVIER SCI LTD
引用统计
被引频次:169[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/16022
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Guo, Jiafeng
作者单位1.Univ Chinese Acad Sci, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing, Peoples R China
3.Univ Massachusetts, Ctr Intelligent Informat Retrieval, Amherst, MA 01003 USA
推荐引用方式
GB/T 7714
Guo, Jiafeng,Fan, Yixing,Pang, Liang,et al. A Deep Look into neural ranking models for information retrieval[J]. INFORMATION PROCESSING & MANAGEMENT,2020,57(6):20.
APA Guo, Jiafeng.,Fan, Yixing.,Pang, Liang.,Yang, Liu.,Ai, Qingyao.,...&Cheng, Xueqi.(2020).A Deep Look into neural ranking models for information retrieval.INFORMATION PROCESSING & MANAGEMENT,57(6),20.
MLA Guo, Jiafeng,et al."A Deep Look into neural ranking models for information retrieval".INFORMATION PROCESSING & MANAGEMENT 57.6(2020):20.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guo, Jiafeng]的文章
[Fan, Yixing]的文章
[Pang, Liang]的文章
百度学术
百度学术中相似的文章
[Guo, Jiafeng]的文章
[Fan, Yixing]的文章
[Pang, Liang]的文章
必应学术
必应学术中相似的文章
[Guo, Jiafeng]的文章
[Fan, Yixing]的文章
[Pang, Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。