CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning to balance the coherence and diversity of response generation in generation-based chatbots
Wang, Shuliang1,2; Li, Dapeng1; Geng, Jing1,2; Yang, Longxing3; Leng, Hongyong1
2020-07-01
发表期刊INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS
ISSN1729-8814
卷号17期号:4页码:11
摘要Generating response with both coherence and diversity is a challenging task in generation-based chatbots. It is more difficult to improve the coherence and diversity of dialog generation at the same time in the response generation model. In this article, we propose an improved method that improves the coherence and diversity of dialog generation by changing the model to use gamma sampling and adding attention mechanism to the knowledge-guided conditional variational autoencoder. The experimental results demonstrate that our proposed method can significantly improve the coherence and diversity of knowledge-guided conditional variational autoencoder for response generation in generation-based chatbots at the same time.
关键词Variational autoencoder dialog system deep learning response generation chatbots
DOI10.1177/1729881420953006
收录类别SCI
语种英语
资助项目Beijing Municipal Science and Technology Project[Z171100005117002] ; Open Fund of Key Laboratory for National Geographic Census and Monitoring, National Administration of Surveying, Mapping and Geoformation[2017NGCMZD03]
WOS研究方向Robotics
WOS类目Robotics
WOS记录号WOS:000567168500001
出版者SAGE PUBLICATIONS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15503
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Dapeng; Geng, Jing
作者单位1.Beijing Inst Technol, Sch Comp Sci & Technol, 5 South St, Beijing 100081, Peoples R China
2.Beijing Inst Technol, Acad E Govt, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Shuliang,Li, Dapeng,Geng, Jing,et al. Learning to balance the coherence and diversity of response generation in generation-based chatbots[J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS,2020,17(4):11.
APA Wang, Shuliang,Li, Dapeng,Geng, Jing,Yang, Longxing,&Leng, Hongyong.(2020).Learning to balance the coherence and diversity of response generation in generation-based chatbots.INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS,17(4),11.
MLA Wang, Shuliang,et al."Learning to balance the coherence and diversity of response generation in generation-based chatbots".INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS 17.4(2020):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Shuliang]的文章
[Li, Dapeng]的文章
[Geng, Jing]的文章
百度学术
百度学术中相似的文章
[Wang, Shuliang]的文章
[Li, Dapeng]的文章
[Geng, Jing]的文章
必应学术
必应学术中相似的文章
[Wang, Shuliang]的文章
[Li, Dapeng]的文章
[Geng, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。