CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Leveraging maximum entropy and correlation on latent factors for learning representations
He, Zhicheng1; Liu, Jie1; Dang, Kai1; Zhuang, Fuzhen2,3; Huang, Yalou4
2020-11-01
发表期刊NEURAL NETWORKS
ISSN0893-6080
卷号131页码:312-323
摘要Many tasks involve learning representations from matrices, and Non-negative Matrix Factorization (NMF) has been widely used due to its excellent interpretability. Through factorization, sample vectors are reconstructed as additive combinations of latent factors, which are represented as non-negative distributions over the raw input features. NMF models are significantly affected by latent factors' distribution characteristics and the correlations among them. And NMF models are faced with the challenge of learning robust latent factor. To this end, we propose to learn representations with an awareness of the semantic quality evaluated from the aspects of intra- and inter-factors. On the one hand, a Maximum Entropy-based function is devised for the intra-factor semantic quality. On the other hand, the semantic uniqueness is evaluated via inter-factor correlation, which reinforces the aim of semantic compactness. Moreover, we present a novel non-linear NMF framework. The learning algorithm is presented and the convergence is theoretically analyzed and proved. Extensive experimental results on multiple datasets demonstrate that our method can be successfully applied to representative NMF models and boost performances over state-of-the-art models. (C) 2020 Elsevier Ltd. All rights reserved.
关键词Non-negative Matrix Factorization Maximum entropy Correlated latent factor learning
DOI10.1016/j.neunet.2020.07.027
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61976119] ; Science and Technology Planning Project of Tianjin, China[18ZXZNGX00310]
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000581746300025
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15475
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Jie
作者单位1.Nankai Univ, Coll Artificial Intelligence, Tianjin, Peoples R China
2.Chinese Acad Sci, Xiamen Data Intelligence Acad ICT, Xiamen, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
4.Nankai Univ, Coll Software, Tianjin, Peoples R China
推荐引用方式
GB/T 7714
He, Zhicheng,Liu, Jie,Dang, Kai,et al. Leveraging maximum entropy and correlation on latent factors for learning representations[J]. NEURAL NETWORKS,2020,131:312-323.
APA He, Zhicheng,Liu, Jie,Dang, Kai,Zhuang, Fuzhen,&Huang, Yalou.(2020).Leveraging maximum entropy and correlation on latent factors for learning representations.NEURAL NETWORKS,131,312-323.
MLA He, Zhicheng,et al."Leveraging maximum entropy and correlation on latent factors for learning representations".NEURAL NETWORKS 131(2020):312-323.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Zhicheng]的文章
[Liu, Jie]的文章
[Dang, Kai]的文章
百度学术
百度学术中相似的文章
[He, Zhicheng]的文章
[Liu, Jie]的文章
[Dang, Kai]的文章
必应学术
必应学术中相似的文章
[He, Zhicheng]的文章
[Liu, Jie]的文章
[Dang, Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。