CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Speedup in classical simulation of Gaussian boson sampling
Wu, Bujiao1,2; Cheng, Bin3; Jia, Fei5; Zhang, Jialin1,2; Yung, Man-Hong3,4,5; Sun, Xiaoming1,2,6
2020-05-30
发表期刊SCIENCE BULLETIN
ISSN2095-9273
卷号65期号:10页码:832-841
摘要Gaussian boson sampling is an alternative model for demonstrating quantum computational supremacy, where squeezed states are injected into every input mode, instead of applying single photons as in the case of standard boson sampling. Here by analyzing numerically the computational costs, we establish a lower bound for achieving quantum computational supremacy for a class of Gaussian boson-sampling problems. Specifically, we propose a more efficient method for calculating the transition probabilities, leading to a significant reduction of the simulation costs. Particularly, our numerical results indicate that one can simulate up to 18 photons for Gaussian boson sampling at the output subspace on a normal laptop, 20 photons on a commercial workstation with 256 cores, and about 30 photons for supercomputers. These numbers are significantly smaller than those in standard boson sampling, suggesting that Gaussian boson sampling could be experimentally-friendly for demonstrating quantum computational supremacy. (C) 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
关键词Gaussian boson sampling Classical simulation Hafnian Probability distribution Marginal distribution Quantum optics
DOI10.1016/j.scib.2020.02.012
收录类别SCI
语种英语
资助项目Guangdong Innovative and Entrepreneurial Research Team Program[2016ZT06D348] ; Natural Science Foundation of Guangdong Province[2017B030308003] ; Key R&D Program of Guangdong Province[2018B030326001] ; Science, Technology and Innovation Commission of Shenzhen Municipality[JCYJ20170412152620376] ; Science, Technology and Innovation Commission of Shenzhen Municipality[JCYJ20170817105046702] ; Science, Technology and Innovation Commission of Shenzhen Municipality[KYTDPT20181011104202253] ; National Natural Science Foundation of China[61832003] ; National Natural Science Foundation of China[61872334] ; National Natural Science Foundation of China[11875160] ; National Natural Science Foundation of China[U1801661] ; Economy, Trade and Information Commission of Shenzhen Municipality[201901161512] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDB28000000] ; K. C. Wong Education Foundation
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000531830800012
出版者ELSEVIER
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15377
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yung, Man-Hong; Sun, Xiaoming
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Dept Phys, Shenzhen 518055, Peoples R China
4.Southern Univ Sci & Technol, Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
5.Huawei Technol, Cent Res Inst, Shenzhen 518129, Peoples R China
6.CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wu, Bujiao,Cheng, Bin,Jia, Fei,et al. Speedup in classical simulation of Gaussian boson sampling[J]. SCIENCE BULLETIN,2020,65(10):832-841.
APA Wu, Bujiao,Cheng, Bin,Jia, Fei,Zhang, Jialin,Yung, Man-Hong,&Sun, Xiaoming.(2020).Speedup in classical simulation of Gaussian boson sampling.SCIENCE BULLETIN,65(10),832-841.
MLA Wu, Bujiao,et al."Speedup in classical simulation of Gaussian boson sampling".SCIENCE BULLETIN 65.10(2020):832-841.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Bujiao]的文章
[Cheng, Bin]的文章
[Jia, Fei]的文章
百度学术
百度学术中相似的文章
[Wu, Bujiao]的文章
[Cheng, Bin]的文章
[Jia, Fei]的文章
必应学术
必应学术中相似的文章
[Wu, Bujiao]的文章
[Cheng, Bin]的文章
[Jia, Fei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。