CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning deep face representation with long-tail data: An aggregate-and-disperse approach
Ma, Yuhao1,2; Kan, Meina1,2; Shan, Shiguang1,2,3; Chen, Xilin1,2
2020-05-01
发表期刊PATTERN RECOGNITION LETTERS
ISSN0167-8655
卷号133页码:48-54
摘要In this work, we study the problem of deep representation learning on a large face dataset with long-tail distribution. Training convolutional neural networks on such dataset with conventional strategy suffers from imbalance problem which results in biased classification boundary, and the few-shot classes lying in tail parts further make the model prone to overfitting. Aiming to learn more discriminative CNN model from long-tail data, we propose a novel aggregate-and-disperse training schema. Firstly, our proposed method aggregates similar classes in tail part to avoid imbalance problem. Based on the aggregated super classes and those original head classes, a model is pre-trained to capture accurate discrimination in head classes as well as coarse discrinimation in tail classes. Secondly, we selectively disperses those aggregated super classes to learn precise inter-class variations and refine the representation for better generalization. We perform extensive experiments on MS-Celeb-1M, BLUFR and MegaFace. Compared with baselines and existing methods, our method achieves better performance of face recognition, demonstrating its effectiveness of handling long-tail distribution. (C) 2020 Published by Elsevier B.V
关键词Face recognition Deep representation learning Long-tail distribution Aggregate-and-disperse
DOI10.1016/j.patrec.2020.02.007
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2017YFA070 080 0] ; Natural Science Foundation of China[61772496] ; Natural Science Foundation of China[61732004] ; Natural Science Foundation of China[61532018]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000537129300007
出版者ELSEVIER
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15248
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Kan, Meina
作者单位1.Chinese Acad Sci, Inst Comp Technol, CAS, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai 200031, Peoples R China
推荐引用方式
GB/T 7714
Ma, Yuhao,Kan, Meina,Shan, Shiguang,et al. Learning deep face representation with long-tail data: An aggregate-and-disperse approach[J]. PATTERN RECOGNITION LETTERS,2020,133:48-54.
APA Ma, Yuhao,Kan, Meina,Shan, Shiguang,&Chen, Xilin.(2020).Learning deep face representation with long-tail data: An aggregate-and-disperse approach.PATTERN RECOGNITION LETTERS,133,48-54.
MLA Ma, Yuhao,et al."Learning deep face representation with long-tail data: An aggregate-and-disperse approach".PATTERN RECOGNITION LETTERS 133(2020):48-54.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ma, Yuhao]的文章
[Kan, Meina]的文章
[Shan, Shiguang]的文章
百度学术
百度学术中相似的文章
[Ma, Yuhao]的文章
[Kan, Meina]的文章
[Shan, Shiguang]的文章
必应学术
必应学术中相似的文章
[Ma, Yuhao]的文章
[Kan, Meina]的文章
[Shan, Shiguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。