CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Detecting Small Objects Using a Channel-Aware Deconvolutional Network
Duan, Kaiwen1,2; Du, Dawei3; Qi, Honggang1,2; Huang, Qingming1,2,4
2020-06-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
ISSN1051-8215
卷号30期号:6页码:1639-1652
摘要Detecting small objects is a challenging task due to their low resolution and noisy representation even using deep learning methods. In this paper, we propose a novel object detection method based on the channel-aware deconvolutional network (CADNet) for accurate small object detection. Specifically, we develop the channel-aware deconvolution (ChaDeConv) layer to exploit the correlations of feature maps in different channels across deeper layers, improving the recall rate of small objects at low additional computational costs. Following the ChaDeConv layer, the multiple region proposal sub-network (Multi-RPN) is employed to supervise and optimize multiple detection layers simultaneously to achieve better accuracy. The Multi-RPN module is only used in the training phase and does not increase the computation cost of the inference. In addition, we design a new anchor matching strategy based on the center point translation (CPTMatching) of anchors to select more extending anchors as positive samples in the training phase. The extensive experiments on the PASCAL VOC 2007/2012, MS COCO, and UAVDT datasets show that the proposed CADNet achieves state-of-the-art performance compared to the existing methods.
关键词Object detection Feature extraction Training Birds Deconvolution Proposals Detectors Small object detection channel-aware deconvolution multi-RPN anchor matching
DOI10.1109/TCSVT.2019.2906246
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61836002] ; National Natural Science Foundation of China[61771341] ; National Natural Science Foundation of China[61472388] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000543144200012
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:38[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15203
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Qi, Honggang; Huang, Qingming
作者单位1.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
2.Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100190, Peoples R China
3.SUNY Albany, Dept Comp Sci, Albany, NY 12222 USA
4.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Duan, Kaiwen,Du, Dawei,Qi, Honggang,et al. Detecting Small Objects Using a Channel-Aware Deconvolutional Network[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2020,30(6):1639-1652.
APA Duan, Kaiwen,Du, Dawei,Qi, Honggang,&Huang, Qingming.(2020).Detecting Small Objects Using a Channel-Aware Deconvolutional Network.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,30(6),1639-1652.
MLA Duan, Kaiwen,et al."Detecting Small Objects Using a Channel-Aware Deconvolutional Network".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 30.6(2020):1639-1652.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Duan, Kaiwen]的文章
[Du, Dawei]的文章
[Qi, Honggang]的文章
百度学术
百度学术中相似的文章
[Duan, Kaiwen]的文章
[Du, Dawei]的文章
[Qi, Honggang]的文章
必应学术
必应学术中相似的文章
[Duan, Kaiwen]的文章
[Du, Dawei]的文章
[Qi, Honggang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。