CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
SkeletonNet: A Hybrid Network With a Skeleton-Embedding Process for Multi-View Image Representation Learning
Yang, Shijie1,2; Li, Liang3; Wang, Shuhui3; Zhang, Weigang4,5; Huang, Qingming1,2,3; Tian, Qi6,7
2019-11-01
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
卷号21期号:11页码:2916-2929
摘要Multi-view representation learning plays a fundamental role in multimedia data analysis. Some specific inter-view alignment principles are adopted in conventional models, where there is an assumption that different views share a common latent subspace. However, when dealing views on diverse semantic levels, the view-specific characteristics are neglected, and the divergent inconsistency of similarity measurements hinders sufficient information sharing. This paper proposes a hybrid deep network by introducing tensor factorization into the multi-view deep auto-encoder. The network adopts skeleton-embedding process for unsupervised multi-view subspace learning. It takes full consideration of view-specific characteristics, and leverages the strength of both shallow and deep architectures for modeling low- and high-level views, respectively. We first formulate the high-level-view semantic distribution as the underlying skeleton structure of the learned subspace, and then infer the local tangent structures according to the affinity propagation of low-level-view geometric correlations. As a consequence, more discriminative subspace representation can be learned from global semantic pivots to local geometric details. Experimental comparisons on three benchmark image datasets show the promising performance and flexibility of our model.
关键词Semantics Correlation Visualization Skeleton Matrix decomposition Kernel Laplace equations Unsupervised multi-view subspace learning semantic inconsistency tensor factorization deep auto-encoders
DOI10.1109/TMM.2019.2912735
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61836002] ; National Natural Science Foundation of China[61771457] ; National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61732007] ; National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61572488] ; National Natural Science Foundation of China[61772494] ; National Natural Science Foundation of China[61472389] ; National Basic Research Program of China (973 Program)[2015CB351800] ; Key Research Program of Frontier Sciences[CAS: QYZDJ-SSW-SYS013]
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:000494363000018
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:39[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14884
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Liang
作者单位1.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
2.Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 101408, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
4.Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China
5.Chinese Acad Sci, Univ Chinese Acad Sci, Beijing 100049, Peoples R China
6.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
7.Huawei Noahs Ark Lab, Comp Vis, Shenzhen 518129, Peoples R China
推荐引用方式
GB/T 7714
Yang, Shijie,Li, Liang,Wang, Shuhui,et al. SkeletonNet: A Hybrid Network With a Skeleton-Embedding Process for Multi-View Image Representation Learning[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2019,21(11):2916-2929.
APA Yang, Shijie,Li, Liang,Wang, Shuhui,Zhang, Weigang,Huang, Qingming,&Tian, Qi.(2019).SkeletonNet: A Hybrid Network With a Skeleton-Embedding Process for Multi-View Image Representation Learning.IEEE TRANSACTIONS ON MULTIMEDIA,21(11),2916-2929.
MLA Yang, Shijie,et al."SkeletonNet: A Hybrid Network With a Skeleton-Embedding Process for Multi-View Image Representation Learning".IEEE TRANSACTIONS ON MULTIMEDIA 21.11(2019):2916-2929.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Shijie]的文章
[Li, Liang]的文章
[Wang, Shuhui]的文章
百度学术
百度学术中相似的文章
[Yang, Shijie]的文章
[Li, Liang]的文章
[Wang, Shuhui]的文章
必应学术
必应学术中相似的文章
[Yang, Shijie]的文章
[Li, Liang]的文章
[Wang, Shuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。