CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Case for Adaptive Resource Management in Alibaba Datacenter Using Neural Networks
Wang, Sa1,2,3; Zhu, Yan-Hai4; Chen, Shan-Pei4; Wu, Tian-Ze1,2; Li, Wen-Jie1,2; Zhan, Xu-Sheng1,2; Ding, Hai-Yang4; Shi, Wei-Song5; Bao, Yun-Gang1,2,3
2020
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN1000-9000
卷号35期号:1页码:209-220
摘要Both resource efficiency and application QoS have been big concerns of datacenter operators for a long time, but remain to be irreconcilable. High resource utilization increases the risk of resource contention between co-located workload, which makes latency-critical (LC) applications suffer unpredictable, and even unacceptable performance. Plenty of prior work devotes the effort on exploiting effective mechanisms to protect the QoS of LC applications while improving resource efficiency. In this paper, we propose MAGI, a resource management runtime that leverages neural networks to monitor and further pinpoint the root cause of performance interference, and adjusts resource shares of corresponding applications to ensure the QoS of LC applications. MAGI is a practice in Alibaba datacenter to provide on-demand resource adjustment for applications using neural networks. The experimental results show that MAGI could reduce up to 87.3% performance degradation of LC application when co-located with other antagonist applications.
关键词resource management neural network resource efficiency tail latency
DOI10.1007/s11390-020-9732-x
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2016YFB1000201] ; National Natural Science Foundation of China[61420106013] ; National Natural Science Foundation of China[61702480] ; Youth Innovation Promotion Association of Chinese Academy of Sciences and Alibaba Innovative Research (AIR) Program
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:000512098800013
出版者SCIENCE PRESS
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14690
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhu, Yan-Hai
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Peng Cheng Lab, Shenzhen 518055, Peoples R China
4.Alibaba Inc, Hangzhou 311121, Peoples R China
5.Wayne State Univ, Dept Comp Sci, Detroit, MI 48202 USA
推荐引用方式
GB/T 7714
Wang, Sa,Zhu, Yan-Hai,Chen, Shan-Pei,et al. A Case for Adaptive Resource Management in Alibaba Datacenter Using Neural Networks[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2020,35(1):209-220.
APA Wang, Sa.,Zhu, Yan-Hai.,Chen, Shan-Pei.,Wu, Tian-Ze.,Li, Wen-Jie.,...&Bao, Yun-Gang.(2020).A Case for Adaptive Resource Management in Alibaba Datacenter Using Neural Networks.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,35(1),209-220.
MLA Wang, Sa,et al."A Case for Adaptive Resource Management in Alibaba Datacenter Using Neural Networks".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 35.1(2020):209-220.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Sa]的文章
[Zhu, Yan-Hai]的文章
[Chen, Shan-Pei]的文章
百度学术
百度学术中相似的文章
[Wang, Sa]的文章
[Zhu, Yan-Hai]的文章
[Chen, Shan-Pei]的文章
必应学术
必应学术中相似的文章
[Wang, Sa]的文章
[Zhu, Yan-Hai]的文章
[Chen, Shan-Pei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。