CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Robust Visual Tracking via Hierarchical Particle Filter and Ensemble Deep Features
Li, Shengjie1,2; Zhao, Shuai1,2; Cheng, Bo1,2; Zhao, Erhu3; Chen, Junliang1
2020
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
ISSN1051-8215
卷号30期号:1页码:179-191
摘要Particle filter algorithms are a very important branch for visual object tracking in the past decades, showing strong robustness to challenging scenarios with partial occlusion and large-scale variations. However, since a large number of particles need to be extracted for the accurate target state estimation, their tracking efficiency typically suffers especially when meeting deep convolutional features, which have been developed for handling significant variations of the target appearance in the visual tracking community. In this paper, we propose to elegantly exploit deep convolutional features with few particles in a novel hierarchical particle filter, which formulates correlation filters as observation models and breaks the standard particle filter framework down into two constituent particle layers, namely, particle translation layer and particle scale layer. The particle translation layer focuses on the object location with the deep convolutional features capturing semantics but failing to precisely estimate the object scale, while the particle scale layer pays attention to large-scale variations with the lightweight hand-crafted features handling spatial details of the object size. Moreover, an efficient ensemble method is proposed to help explore deeper convolutional features with more semantics in the particle translation layer. Extensive experiments on four challenging tracking datasets, including OTB-2013, OTB-2015, VOT2014, and VOT2015 demonstrate that the proposed method performs favorably against a number of state-of-the-art trackers.
关键词Object tracking correlation filter hierarchical particle filter convolutional neural networks
DOI10.1109/TCSVT.2018.2889457
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61501048] ; Beijing Natural Science Foundation[4182042] ; Fundamental Research Funds for the Central Universities[2017RC12]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000521641800015
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:16[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14032
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhao, Shuai
作者单位1.Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
2.Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Shengjie,Zhao, Shuai,Cheng, Bo,et al. Robust Visual Tracking via Hierarchical Particle Filter and Ensemble Deep Features[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2020,30(1):179-191.
APA Li, Shengjie,Zhao, Shuai,Cheng, Bo,Zhao, Erhu,&Chen, Junliang.(2020).Robust Visual Tracking via Hierarchical Particle Filter and Ensemble Deep Features.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,30(1),179-191.
MLA Li, Shengjie,et al."Robust Visual Tracking via Hierarchical Particle Filter and Ensemble Deep Features".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 30.1(2020):179-191.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Shengjie]的文章
[Zhao, Shuai]的文章
[Cheng, Bo]的文章
百度学术
百度学术中相似的文章
[Li, Shengjie]的文章
[Zhao, Shuai]的文章
[Cheng, Bo]的文章
必应学术
必应学术中相似的文章
[Li, Shengjie]的文章
[Zhao, Shuai]的文章
[Cheng, Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。