CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
SELM: Semi-supervised ELM with application in sparse calibrated location estimation
Liu, Junfa1; Chen, Yiqiang1; Liu, Mingjie1,2; Zhao, Zhongtang1,2
2011-09-01
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号74期号:16页码:2566-2572
摘要Indoor location estimation based on Wi-Fi has attracted more and more attention from both research and industry fields. It brings two significant challenges. One is requiring a vast amount of labeled calibration data. The other is real-time training and testing for location estimation task. Traditional machine learning methods cannot get high performance in both aspects. This paper proposed a novel semi-supervised learning method SELM (semi-supervised extreme learning machine) and applied it to sparse calibrated location estimation. There are two advantages of the proposed SELM. First, it employs graph Laplacian regularization to import large number of unlabeled samples which can dramatically reduce labeled calibration samples. Second, it inherits the good property of ELM on extreme training and testing speed. Comparative experiments show that with same number of labeled samples, our method outperforms original ELM and back propagation (BP) network, especially in the case that the calibration data is very sparse. (C) 2011 Elsevier B.V. All rights reserved.
关键词Semi-supervised extreme learning machine Location estimation Sparse calibration Graph Laplacian
DOI10.1016/j.neucom.2010.12.043
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[90820303] ; National Natural Science Foundation of China[61070110] ; National 863 High Technology Research and Development Program of China[2009AA01Z320] ; Beijing Municipal Education Commission
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000295106000019
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:71[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/13169
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Junfa
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Grad Sch, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liu, Junfa,Chen, Yiqiang,Liu, Mingjie,et al. SELM: Semi-supervised ELM with application in sparse calibrated location estimation[J]. NEUROCOMPUTING,2011,74(16):2566-2572.
APA Liu, Junfa,Chen, Yiqiang,Liu, Mingjie,&Zhao, Zhongtang.(2011).SELM: Semi-supervised ELM with application in sparse calibrated location estimation.NEUROCOMPUTING,74(16),2566-2572.
MLA Liu, Junfa,et al."SELM: Semi-supervised ELM with application in sparse calibrated location estimation".NEUROCOMPUTING 74.16(2011):2566-2572.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Junfa]的文章
[Chen, Yiqiang]的文章
[Liu, Mingjie]的文章
百度学术
百度学术中相似的文章
[Liu, Junfa]的文章
[Chen, Yiqiang]的文章
[Liu, Mingjie]的文章
必应学术
必应学术中相似的文章
[Liu, Junfa]的文章
[Chen, Yiqiang]的文章
[Liu, Mingjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。