CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A WORD POSITION-RELATED LDA MODEL
Zhai, Lidong1; Ding, Zhaoyun2; Jia, Yan2; Zhou, Bin2
2011-09-01
发表期刊INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE
ISSN0218-0014
卷号25期号:6页码:909-925
摘要LDA (Latent Dirichlet Allocation) proposed by Blei is a generative probabilistic model of a corpus, where documents are represented as random mixtures over latent topics, and each topic is characterized by a distribution over words, but not the attributes of word positions of every document in the corpus. In this paper, a Word Position-Related LDA Model is proposed taking into account the attributes of word positions of every document in the corpus, where each word is characterized by a distribution over word positions. At the same time, the precision of the topic-word's interpretability is improved by integrating the distribution of the word-position and the appropriate word degree, taking into account the different word degree in the different word positions. Finally, a new method, a size-aware word intrusion method is proposed to improve the ability of the topic-word's interpretability. Experimental results on the NIPS corpus show that the Word Position-Related LDA Model can improve the precision of the topic-word's interpretability. And the average improvement of the precision in the topic-word's interpretability is about 9.67%. Also, the size-aware word intrusion method can interpret the topic-word's semantic information more comprehensively and more effectively through comparing the different experimental data.
关键词LDA probabilistic topic models word position word degree word intrusion
DOI10.1142/S0218001411008890
收录类别SCI
语种英语
资助项目Basic Research Program of China (973 Program)[2007CB311100] ; National Natural Science Foundation of China[61003261] ; National Natural Science Foundation of China[60933005] ; National Natural Science Foundation of China[60873204] ; National Natural Science Foundation of China[12505] ; National Natural Science Foundation of China[2011AA010702]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000295128400006
出版者WORLD SCIENTIFIC PUBL CO PTE LTD
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/13164
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhai, Lidong
作者单位1.Chinese Acad Sci, Inst Comp Technol, Res Ctr Informat Secur, Beijing, Peoples R China
2.Natl Univ Def Technol, Sch Comp, Changsha, Hunan, Peoples R China
推荐引用方式
GB/T 7714
Zhai, Lidong,Ding, Zhaoyun,Jia, Yan,et al. A WORD POSITION-RELATED LDA MODEL[J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE,2011,25(6):909-925.
APA Zhai, Lidong,Ding, Zhaoyun,Jia, Yan,&Zhou, Bin.(2011).A WORD POSITION-RELATED LDA MODEL.INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE,25(6),909-925.
MLA Zhai, Lidong,et al."A WORD POSITION-RELATED LDA MODEL".INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE 25.6(2011):909-925.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhai, Lidong]的文章
[Ding, Zhaoyun]的文章
[Jia, Yan]的文章
百度学术
百度学术中相似的文章
[Zhai, Lidong]的文章
[Ding, Zhaoyun]的文章
[Jia, Yan]的文章
必应学术
必应学术中相似的文章
[Zhai, Lidong]的文章
[Ding, Zhaoyun]的文章
[Jia, Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。