CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
An effective discretization based on Class-Attribute Coherence Maximization
Li, Min1,3,4; Deng, ShaoBo2,3,4; Feng, Shengzhong1; Fan, Jianping1
2011-11-01
发表期刊PATTERN RECOGNITION LETTERS
ISSN0167-8655
卷号32期号:15页码:1962-1973
摘要Discretization of continuous data is one of the important pre-processing tasks in data mining and knowledge discovery. Generally speaking, discretization can lead to improved predictive accuracy of induction algorithms, and the obtained rules are normally shorter and more understandable. In this paper, we present the Class-Attribute Coherence Maximization (CACM) algorithm and the Efficient-CACM algorithm. We have compared the performance of our algorithms with the most relevant discretization algorithm, Fast Class-Attribute Interdependence Maximization (Fast-CAIM) discertization algorithm (Kurgan and Cios, 2003). Empirical evaluation of our algorithms and Fast-CAIM on 12 well-known datasets shows that ours generate the superior discretization scheme, which can significantly improve the classification performance of C4.5 and RBF-SVM classifier. As to the execution time of discretization, ours also prove faster than Fast-CAIM algorithm, with the Efficient-CACM algorithm having the shortest execution time. (C) 2011 Elsevier B.V. All rights reserved.
关键词Discretization CAIM CACM Classification Class-Attribute Independence Redundancy (CAIR)
DOI10.1016/j.patrec.2011.08.008
收录类别SCI
语种英语
资助项目National High Technology Research and Development Program of China (863 Programs)[2007AA120502] ; National High Technology Research and Development Program of China (863 Programs)[2006AA01A114] ; Jiangxi Education Department, China[GJJ11632]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000297885900004
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/13048
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Min
作者单位1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Guangdong, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100080, Peoples R China
3.Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China
4.Nanchang Inst Technol, Nanchang 330099, Jiangxi, Peoples R China
推荐引用方式
GB/T 7714
Li, Min,Deng, ShaoBo,Feng, Shengzhong,et al. An effective discretization based on Class-Attribute Coherence Maximization[J]. PATTERN RECOGNITION LETTERS,2011,32(15):1962-1973.
APA Li, Min,Deng, ShaoBo,Feng, Shengzhong,&Fan, Jianping.(2011).An effective discretization based on Class-Attribute Coherence Maximization.PATTERN RECOGNITION LETTERS,32(15),1962-1973.
MLA Li, Min,et al."An effective discretization based on Class-Attribute Coherence Maximization".PATTERN RECOGNITION LETTERS 32.15(2011):1962-1973.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Min]的文章
[Deng, ShaoBo]的文章
[Feng, Shengzhong]的文章
百度学术
百度学术中相似的文章
[Li, Min]的文章
[Deng, ShaoBo]的文章
[Feng, Shengzhong]的文章
必应学术
必应学术中相似的文章
[Li, Min]的文章
[Deng, ShaoBo]的文章
[Feng, Shengzhong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。