Institute of Computing Technology, Chinese Academy IR
An effective discretization based on Class-Attribute Coherence Maximization | |
Li, Min1,3,4; Deng, ShaoBo2,3,4; Feng, Shengzhong1; Fan, Jianping1 | |
2011-11-01 | |
发表期刊 | PATTERN RECOGNITION LETTERS |
ISSN | 0167-8655 |
卷号 | 32期号:15页码:1962-1973 |
摘要 | Discretization of continuous data is one of the important pre-processing tasks in data mining and knowledge discovery. Generally speaking, discretization can lead to improved predictive accuracy of induction algorithms, and the obtained rules are normally shorter and more understandable. In this paper, we present the Class-Attribute Coherence Maximization (CACM) algorithm and the Efficient-CACM algorithm. We have compared the performance of our algorithms with the most relevant discretization algorithm, Fast Class-Attribute Interdependence Maximization (Fast-CAIM) discertization algorithm (Kurgan and Cios, 2003). Empirical evaluation of our algorithms and Fast-CAIM on 12 well-known datasets shows that ours generate the superior discretization scheme, which can significantly improve the classification performance of C4.5 and RBF-SVM classifier. As to the execution time of discretization, ours also prove faster than Fast-CAIM algorithm, with the Efficient-CACM algorithm having the shortest execution time. (C) 2011 Elsevier B.V. All rights reserved. |
关键词 | Discretization CAIM CACM Classification Class-Attribute Independence Redundancy (CAIR) |
DOI | 10.1016/j.patrec.2011.08.008 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National High Technology Research and Development Program of China (863 Programs)[2007AA120502] ; National High Technology Research and Development Program of China (863 Programs)[2006AA01A114] ; Jiangxi Education Department, China[GJJ11632] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000297885900004 |
出版者 | ELSEVIER SCIENCE BV |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/13048 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Li, Min |
作者单位 | 1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Guangdong, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100080, Peoples R China 3.Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China 4.Nanchang Inst Technol, Nanchang 330099, Jiangxi, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Min,Deng, ShaoBo,Feng, Shengzhong,et al. An effective discretization based on Class-Attribute Coherence Maximization[J]. PATTERN RECOGNITION LETTERS,2011,32(15):1962-1973. |
APA | Li, Min,Deng, ShaoBo,Feng, Shengzhong,&Fan, Jianping.(2011).An effective discretization based on Class-Attribute Coherence Maximization.PATTERN RECOGNITION LETTERS,32(15),1962-1973. |
MLA | Li, Min,et al."An effective discretization based on Class-Attribute Coherence Maximization".PATTERN RECOGNITION LETTERS 32.15(2011):1962-1973. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论