CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Modeling continuous visual features for semantic image annotation and retrieval
Li, Zhixin1,2; Shi, Zhiping1; Liu, Xi1; Shi, Zhongzhi1
2011-02-01
发表期刊PATTERN RECOGNITION LETTERS
ISSN0167-8655
卷号32期号:3页码:516-523
摘要Automatic image annotation has become an important and challenging problem due to the existence of semantic gap. In this paper, we firstly extend probabilistic latent semantic analysis (PLSA) to model continuous quantity. In addition, corresponding Expectation-Maximization (EM) algorithm is derived to determine the model parameters. Furthermore, in order to deal with the data of different modalities in terms of their characteristics, we present a semantic annotation model which employs continuous PLSA and standard PLSA to model visual features and textual words respectively. The model learns the correlation between these two modalities by an asymmetric learning approach and then it can predict semantic annotation precisely for unseen images. Finally, we compare our approach with several state-of-the-art approaches on the Core15k and Core130k datasets. The experiment results show that our approach performs more effectively and accurately. (C) 2010 Elsevier B.V. All rights reserved.
关键词Automatic image annotation Continuous PLSA Latent aspect model Semantic gap Image retrieval
DOI10.1016/j.patrec.2010.11.015
收录类别SCI
语种英语
资助项目National Basic Research Priorities Programme[2007CB311004] ; National Science and Technology Support Plan[2006BAC08B06] ; National Natural Science Foundation of China[60933004] ; National Natural Science Foundation of China[60903141] ; National Natural Science Foundation of China[60903079] ; National Natural Science Foundation of China[60775035] ; National Natural Science Foundation of China[60970088]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000286560600013
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/12880
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Zhixin
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
2.Guangxi Normal Univ, Coll Comp Sci & Informat Technol, Guilin 541004, Peoples R China
推荐引用方式
GB/T 7714
Li, Zhixin,Shi, Zhiping,Liu, Xi,et al. Modeling continuous visual features for semantic image annotation and retrieval[J]. PATTERN RECOGNITION LETTERS,2011,32(3):516-523.
APA Li, Zhixin,Shi, Zhiping,Liu, Xi,&Shi, Zhongzhi.(2011).Modeling continuous visual features for semantic image annotation and retrieval.PATTERN RECOGNITION LETTERS,32(3),516-523.
MLA Li, Zhixin,et al."Modeling continuous visual features for semantic image annotation and retrieval".PATTERN RECOGNITION LETTERS 32.3(2011):516-523.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Zhixin]的文章
[Shi, Zhiping]的文章
[Liu, Xi]的文章
百度学术
百度学术中相似的文章
[Li, Zhixin]的文章
[Shi, Zhiping]的文章
[Liu, Xi]的文章
必应学术
必应学术中相似的文章
[Li, Zhixin]的文章
[Shi, Zhiping]的文章
[Liu, Xi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。