CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Multi-Task Rank Learning for Visual Saliency Estimation
Li, Jia1,2; Tian, Yonghong3; Huang, Tiejun3; Gao, Wen3
2011-05-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
ISSN1051-8215
卷号21期号:5页码:623-636
摘要Visual saliency plays an important role in various video applications such as video retargeting and intelligent video advertising. However, existing visual saliency estimation approaches often construct a unified model for all scenes, thus leading to poor performance for the scenes with diversified contents. To solve this problem, we propose a multi-task rank learning approach which can be used to infer multiple saliency models that apply to different scene clusters. In our approach, the problem of visual saliency estimation is formulated in a pair-wise rank learning framework, in which the visual features can be effectively integrated to distinguish salient targets from distractors. A multi-task learning algorithm is then presented to infer multiple visual saliency models simultaneously. By an appropriate sharing of information across models, the generalization ability of each model can be greatly improved. Extensive experiments on a public eye-fixation dataset show that our multi-task rank learning approach outperforms 12 state-of-the-art methods remarkably in visual saliency estimation.
关键词Generalization ability multi-task learning pair-wise rank learning visual saliency
DOI10.1109/TCSVT.2011.2129430
收录类别SCI
语种英语
资助项目Chinese National Natural Science Foundation[61035001] ; Chinese National Natural Science Foundation[60973055] ; Chinese National Natural Science Foundation[90820003] ; National Basic Research Program of China[2009CB320906] ; Fok Ying Dong Education Foundation[122008]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000290174900009
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:25[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/12787
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Jia
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Grad Univ CAS, Beijing 100049, Peoples R China
3.Peking Univ, Sch Elect Engn & Comp Sci, Natl Engn Lab Video Technol, Key Lab Machine Percept MoE, Beijing 100871, Peoples R China
推荐引用方式
GB/T 7714
Li, Jia,Tian, Yonghong,Huang, Tiejun,et al. Multi-Task Rank Learning for Visual Saliency Estimation[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2011,21(5):623-636.
APA Li, Jia,Tian, Yonghong,Huang, Tiejun,&Gao, Wen.(2011).Multi-Task Rank Learning for Visual Saliency Estimation.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,21(5),623-636.
MLA Li, Jia,et al."Multi-Task Rank Learning for Visual Saliency Estimation".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 21.5(2011):623-636.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Jia]的文章
[Tian, Yonghong]的文章
[Huang, Tiejun]的文章
百度学术
百度学术中相似的文章
[Li, Jia]的文章
[Tian, Yonghong]的文章
[Huang, Tiejun]的文章
必应学术
必应学术中相似的文章
[Li, Jia]的文章
[Tian, Yonghong]的文章
[Huang, Tiejun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。