CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Modeling spatial and semantic cues for large-scale near-duplicated image retrieval
Zhang, Shiliang2; Tian, Qi1; Hua, Gang3; Zhou, Wengang4; Huang, Qingming5; Li, Houqiang4; Gao, Wen2
2011-03-01
发表期刊COMPUTER VISION AND IMAGE UNDERSTANDING
ISSN1077-3142
卷号115期号:3页码:403-414
摘要Bag-of-visual Words (BOW) image representation has been illustrated as one of the most promising solutions for large-scale near-duplicated image retrieval. However, the traditional visual vocabulary is created in an unsupervised way by clustering a large number of image local features. This is not ideal because it largely ignores the semantic and spatial contexts between local features. In this paper, we propose the geometric visual vocabulary which captures the spatial contexts by quantizing local features in bi-space, i.e., in descriptor space and orientation space. Then, we propose to capture the semantic context by learning a semantic-aware distance metric between local features, which could reasonably measure the semantic similarities between image patches, from which the local features are extracted. The learned distance is hence utilized to cluster the local features for semantic visual vocabulary generation. Finally, we combine the spatial and semantic contexts in a unified framework by extracting local feature groups, computing the spatial configurations between the local features inside the group, and learning a semantic-aware distance between groups. The learned group distance is then utilized to cluster the extracted local feature groups to generate a novel visual vocabulary. i.e., the contextual visual vocabulary. The proposed visual vocabularies, i.e., geometric visual vocabulary, semantic visual vocabulary and contextual visual vocabulary are tested in large-scale near-duplicated image retrieval applications. The geometric visual vocabulary and semantic visual vocabulary achieve better performance than the traditional visual vocabulary. Moreover, the contextual visual vocabulary, which combines both spatial and semantic clues outperforms the state-of-the-art bundled feature in both retrieval precision and efficiency. (C) 2010 Elsevier Inc. All rights reserved.
关键词Visual vocabulary Near-duplicated image retrieval Local feature Distance metric learning
DOI10.1016/j.cviu.2010.11.003
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61025011] ; National Natural Science Foundation of China[60833006] ; National Basic Research Program of China (973 Program)[2009CB320906] ; Beijing Natural Science Foundation[4092042] ; NSF IIS[1052851] ; Akiira Media Systems, Inc.
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000287772400011
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/12757
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tian, Qi
作者单位1.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
2.CAS, Inst Comput Tech, Key Lab Intell Info Proc, Beijing 100190, Peoples R China
3.IBM Watson Res Ctr, Elmsford, NY 10523 USA
4.Univ Sci & Technol China, Dept EEIS, Hefei 230026, Peoples R China
5.Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Shiliang,Tian, Qi,Hua, Gang,et al. Modeling spatial and semantic cues for large-scale near-duplicated image retrieval[J]. COMPUTER VISION AND IMAGE UNDERSTANDING,2011,115(3):403-414.
APA Zhang, Shiliang.,Tian, Qi.,Hua, Gang.,Zhou, Wengang.,Huang, Qingming.,...&Gao, Wen.(2011).Modeling spatial and semantic cues for large-scale near-duplicated image retrieval.COMPUTER VISION AND IMAGE UNDERSTANDING,115(3),403-414.
MLA Zhang, Shiliang,et al."Modeling spatial and semantic cues for large-scale near-duplicated image retrieval".COMPUTER VISION AND IMAGE UNDERSTANDING 115.3(2011):403-414.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Shiliang]的文章
[Tian, Qi]的文章
[Hua, Gang]的文章
百度学术
百度学术中相似的文章
[Zhang, Shiliang]的文章
[Tian, Qi]的文章
[Hua, Gang]的文章
必应学术
必应学术中相似的文章
[Zhang, Shiliang]的文章
[Tian, Qi]的文章
[Hua, Gang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。