CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Building Sparse Multiple-Kernel SVM Classifiers
Hu, Mingqing1; Chen, Yidiang1; Kwok, James Tin-Yau2
2009-05-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS
ISSN1045-9227
卷号20期号:5页码:827-839
摘要The support vector machines (SVMs) have been very successful in many machine learning problems. However, they can be slow during testing because of the possibly large number of support vectors obtained. Recently, Wu et al. (2005) proposed a sparse formulation that restricts the SVM to use a small number of expansion vectors. In this paper, we further extend this idea by integrating with techniques from multiple-kernel learning (MKL). The kernel function in this sparse SVM formulation no longer needs to be fixed but can be automatically learned as a linear combination of kernels. Two formulations of such sparse multiple-kernel classifiers are proposed. The first one is based on a convex combination of the given base kernels, while the second one uses a convex combination of the so-called "equivalent" kernels. Empirically, the second formulation is particularly competitive. Experiments on a large number of toy and real-world data sets show that the resultant classifier is compact and accurate, and can also be easily trained by simply alternating linear program and standard SVM solver.
关键词Gradient projection kernel methods multiple-kernel learning (MKL) sparsity support vector machine (SVM)
DOI10.1109/TNN.2009.2014229
收录类别SCI
语种英语
资助项目National High Technology Research and Development Program of China[2007AA01Z305] ; National Natural Science Foundation of China[60775027] ; Research Grants Council of the Hong Kong Special Administrative Region, China[614907]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000265748600007
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:84[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/11795
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Hu, Mingqing
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100080, Peoples R China
2.Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Hu, Mingqing,Chen, Yidiang,Kwok, James Tin-Yau. Building Sparse Multiple-Kernel SVM Classifiers[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS,2009,20(5):827-839.
APA Hu, Mingqing,Chen, Yidiang,&Kwok, James Tin-Yau.(2009).Building Sparse Multiple-Kernel SVM Classifiers.IEEE TRANSACTIONS ON NEURAL NETWORKS,20(5),827-839.
MLA Hu, Mingqing,et al."Building Sparse Multiple-Kernel SVM Classifiers".IEEE TRANSACTIONS ON NEURAL NETWORKS 20.5(2009):827-839.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Mingqing]的文章
[Chen, Yidiang]的文章
[Kwok, James Tin-Yau]的文章
百度学术
百度学术中相似的文章
[Hu, Mingqing]的文章
[Chen, Yidiang]的文章
[Kwok, James Tin-Yau]的文章
必应学术
必应学术中相似的文章
[Hu, Mingqing]的文章
[Chen, Yidiang]的文章
[Kwok, James Tin-Yau]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。