Institute of Computing Technology, Chinese Academy IR
Posterior probability support vector machines for unbalanced data | |
Tao, Q; Wu, GW; Wang, FY; Wang, J | |
2005-11-01 | |
发表期刊 | IEEE TRANSACTIONS ON NEURAL NETWORKS |
ISSN | 1045-9227 |
卷号 | 16期号:6页码:1561-1573 |
摘要 | This paper proposes a complete framework of posterior probability support vector machines (PPSVMs) for weighted training samples using modified concepts of risks, linear separability, margin, and optimal hyperplane. Within this framework, a new optimization problem for unbalanced classification problems is formulated and a new concept of support vectors established. Furthermore, a soft PPSVM with an interpretable parameter nu is obtained which is similar to the nu-SVM developed by Scholkopf et al., and an empirical method for determining the posterior probability is proposed as a new approach to determine nu. The main advantage of an PPSVM classifier lies in that fact that it is closer to the Bayes optimal without knowing the distributions. To validate the proposed method, two synthetic classification examples are used to illustrate the logical correctness of PPSVMs and their relationship to regular SVMs and Bayesian methods. Several other classification experiments are conducted to demonstrate that the performance of PPSVMs is better than regular SVMs in some cases. Compared with fuzzy support vector machines (FSVMs), the proposed PPSVM is a natural and an analytical extension of regular SVMs based on the statistical learning theory. |
关键词 | Bayesian decision theory classification margin maximal margin algorithms v-SVM posterior probability support vector machines (SVMs) unbalanced data |
DOI | 10.1109/tnn.2005.857955 |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000233350300021 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/10214 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Tao, Q |
作者单位 | 1.Chinese Acad Sci, Key Lab Complex Syst & Intelligence Sci, Inst Automat, Beijing 100080, Peoples R China 2.New Star Res Inst Appl Technol, Hefei 230031, Peoples R China 3.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Bioinformat Res Grp, Beijing 100080, Peoples R China 4.Univ Arizona, Tucson, AZ 85721 USA |
推荐引用方式 GB/T 7714 | Tao, Q,Wu, GW,Wang, FY,et al. Posterior probability support vector machines for unbalanced data[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS,2005,16(6):1561-1573. |
APA | Tao, Q,Wu, GW,Wang, FY,&Wang, J.(2005).Posterior probability support vector machines for unbalanced data.IEEE TRANSACTIONS ON NEURAL NETWORKS,16(6),1561-1573. |
MLA | Tao, Q,et al."Posterior probability support vector machines for unbalanced data".IEEE TRANSACTIONS ON NEURAL NETWORKS 16.6(2005):1561-1573. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Tao, Q]的文章 |
[Wu, GW]的文章 |
[Wang, FY]的文章 |
百度学术 |
百度学术中相似的文章 |
[Tao, Q]的文章 |
[Wu, GW]的文章 |
[Wang, FY]的文章 |
必应学术 |
必应学术中相似的文章 |
[Tao, Q]的文章 |
[Wu, GW]的文章 |
[Wang, FY]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论