CSpace

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
A 36 mJ/Inf Convolution Accelerator With Reduced Memory Access and Regrouped Sparse Kernels for Environment Sound Classification on Edge Devices 期刊论文
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2025, 卷号: 72, 期号: 9, 页码: 1258-1262
作者:  Feng, Lichen;  Wang, Tao;  Cai, Rundong;  Min, Feng;  Zhu, Zhangming
收藏  |  浏览/下载:2/0  |  提交时间:2025/12/03
Accuracy  Convolution  Kernel  Computational modeling  Shape  Feature extraction  Timing  Frequency modulation  Power demand  Pipelines  Convolution accelerator  depthwise separable pipeline  environment sound classification  sparse kernel  
Ten Challenging Problems in Federated Foundation Models 期刊论文
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 卷号: 37, 期号: 7, 页码: 4314-4337
作者:  Fan, Tao;  Gu, Hanlin;  Cao, Xuemei;  Chan, Chee Seng;  Chen, Qian;  Chen, Yiqiang;  Feng, Yihui;  Gu, Yang;  Geng, Jiaxiang;  Luo, Bing;  Liu, Shuoling;  Ong, Win Kent;  Ren, Chao;  Shao, Jiaqi;  Sun, Chuan;  Tang, Xiaoli;  Tae, Hong Xi;  Tong, Yongxin;  Wei, Shuyue;  Wu, Fan;  Xi, Wei;  Xu, Mingcong;  Yang, He;  Yang, Xin;  Yan, Jiangpeng;  Yu, Hao;  Yu, Han;  Zhang, Teng;  Zhang, Yifei;  Zhang, Xiaojin;  Zheng, Zhenzhe;  Fan, Lixin;  Yang, Qiang
收藏  |  浏览/下载:4/0  |  提交时间:2025/12/03
Frequency modulation  Foundation models  Privacy  Optimization  Adaptation models  Watermarking  Knowledge transfer  Training  Fans  Data privacy  Federated foundation models (FedFMs)  federated learning  foundation models  large language models  privacy-preserving Ai  
Meta-Wrapper: Differentiable Wrapping Operator for User Interest Selection in CTR Prediction 期刊论文
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 卷号: 44, 期号: 11, 页码: 8449-8464
作者:  Cao, Tianwei;  Xu, Qianqian;  Yang, Zhiyong;  Huang, Qingming
收藏  |  浏览/下载:51/0  |  提交时间:2023/07/12
Feature extraction  Predictive models  Wrapping  Frequency modulation  Computational modeling  Training  Recommender systems  Click-through rate prediction  recommender system  bilevel optimization  meta-learning