Institute of Computing Technology, Chinese Academy IR
i(2)MapReduce: Incremental MapReduce for Mining Evolving Big Data | |
Zhang, Yanfeng1; Chen, Shimin2; Wang, Qiang3; Yu, Ge3 | |
2015-07-01 | |
发表期刊 | IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING |
ISSN | 1041-4347 |
卷号 | 27期号:7页码:1906-1919 |
摘要 | As new data and updates are constantly arriving, the results of data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. In this paper, we propose i(2)MapReduce, a novel incremental processing extension to MapReduce, the most widely used framework for mining big data. Compared with the state-of-the-art work on Incoop, i(2)MapReduce (i) performs key-value pair level incremental processing rather than task level re-computation, (ii) supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and (iii) incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. We evaluate i(2)MapReduce using a one-step algorithm and four iterative algorithms with diverse computation characteristics. Experimental results on Amazon EC2 show significant performance improvements of i(2)MapReduce compared to both plain and iterative MapReduce performing re-computation. |
关键词 | Incremental processing MapReduce iterative computation big data |
DOI | 10.1109/TKDE.2015.2397438 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61300023] ; National Natural Science Foundation of China[61433008] ; National Natural Science Foundation of China[61272179] ; Fundamental Research Funds for the Central Universities[N141605001] ; Fundamental Research Funds for the Central Universities[N120816001] ; China Mobile Fund[MCM20125021] ; MOE-Intel Special Fund of Information Technology[MOE-INTEL-2012-06] ; CAS Hundred Talents program ; NSFC Innovation Research Group[61221062] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000355937800013 |
出版者 | IEEE COMPUTER SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/9734 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Zhang, Yanfeng |
作者单位 | 1.Northeastern Univ, Ctr Comp, Shenyang 110819, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100864, Peoples R China 3.Northeastern Univ, Shenyang 110819, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Yanfeng,Chen, Shimin,Wang, Qiang,et al. i(2)MapReduce: Incremental MapReduce for Mining Evolving Big Data[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2015,27(7):1906-1919. |
APA | Zhang, Yanfeng,Chen, Shimin,Wang, Qiang,&Yu, Ge.(2015).i(2)MapReduce: Incremental MapReduce for Mining Evolving Big Data.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,27(7),1906-1919. |
MLA | Zhang, Yanfeng,et al."i(2)MapReduce: Incremental MapReduce for Mining Evolving Big Data".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 27.7(2015):1906-1919. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论