CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Recommending high-utility search engine queries via a query-recommending model
Wang, JianGuo1; Huang, Joshua Zhexue2; Guo, Jiafeng3; Lan, Yanyan3
2015-11-01
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号167页码:195-208
摘要Query recommendation technology is of great importance for search engines, because it can assist users to find the information they require. Many query recommendation algorithms have been proposed, but they all aim to recommend similar queries and cannot guarantee the usefulness of the recommended queries. In this paper, we argue that it is more important to recommend high-utility queries, i.e., queries that would induce users to search for more useful information. For this purpose, we propose a query-recommending model to rank candidate queries according to their utilities and to recommend those that are useful to users. The query-recommending model ranks a candidate query by assessing the joint probability that the query is selected by the user, that the obtained search results are subsequently clicked by the user, and that the clicked search results ultimately satisfy the user's information need. Three utilities were defined to solve the model: query-level utility, representing the attractiveness of a query to the user; perceived utility, measuring the user's probability of clicking on the search results; and posterior utility, measuring the useful information obtained by the user from the clicked search results. The methods that were used to compute these three utilities from the query log data are presented. The experimental results that were obtained by using real query log data demonstrated that the proposed query-recommending model outperformed six other baseline methods in generating more useful recommendations. (C) 2015 Elsevier B.V. All rights reserved.
关键词Query recommendation Query log analysis Query ranking Recommendation methods
DOI10.1016/j.neucom.2015.04.076
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61473194]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000358808500022
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:19[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/9500
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, JianGuo
作者单位1.Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen Key Lab High Performance Data Min, Shenzhen Inst Adv Technol,Chinese Acad Sci, Shenzhen 518055, Peoples R China
2.Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, JianGuo,Huang, Joshua Zhexue,Guo, Jiafeng,et al. Recommending high-utility search engine queries via a query-recommending model[J]. NEUROCOMPUTING,2015,167:195-208.
APA Wang, JianGuo,Huang, Joshua Zhexue,Guo, Jiafeng,&Lan, Yanyan.(2015).Recommending high-utility search engine queries via a query-recommending model.NEUROCOMPUTING,167,195-208.
MLA Wang, JianGuo,et al."Recommending high-utility search engine queries via a query-recommending model".NEUROCOMPUTING 167(2015):195-208.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, JianGuo]的文章
[Huang, Joshua Zhexue]的文章
[Guo, Jiafeng]的文章
百度学术
百度学术中相似的文章
[Wang, JianGuo]的文章
[Huang, Joshua Zhexue]的文章
[Guo, Jiafeng]的文章
必应学术
必应学术中相似的文章
[Wang, JianGuo]的文章
[Huang, Joshua Zhexue]的文章
[Guo, Jiafeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。