CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Online learning affinity measure with CovBoost for multi-target tracking
Li, Guorong1,3; Huang, Qingming1,2,3; Jiang, Shuqiang2; Xu, Yingkun2; Zhang, Weigang4
2015-11-30
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号168页码:327-335
摘要In this paper, we propose a new online learning method for measuring affinity between tracklets in multi-target tracking. As targets and background usually keep changing in the video, fixed affinity measurement could not adapt to their variations. Most existing affinity learning methods construct labeled samples based on the obtained tracklets, and then minimize a predefined loss function to get an optimal affinity measurement. However, those methods simply assume that the training error equals to testing error which is not true in many of real time tracking scenarios. Differently, we propose to learn affinity measurement through CovBoosting, which considers the evolution of the tracklets and could obtain affinity measurement with more discriminative ability. To deal with targets' disappearance and new targets' appearance, we combine tracklet affinity with contextual information to do an optimal inference. Moreover, an online updating algorithm is developed to guarantee that the learned tracklet affinity is always optimal for tracking targets in current sliding window. Experimental results on benchmark datasets demonstrate that tracklet affinity learned with our method is more discriminative and could greatly improve the performance of the multi-target tracker. (C) 2015 Elsevier B.V. All rights reserved.
关键词Multi-target tracking Tracklet affinity CovBoost Online learning
DOI10.1016/j.neucom.2015.05.093
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973 Program)[2012CB316400] ; National Natural Science Foundation of China[61303153] ; National Natural Science Foundation of China[61025011] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[61202322] ; China Postdoctoral Science Foundation[2014T70111] ; President Foundation of UCAS
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000359165000033
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/9494
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jiang, Shuqiang
作者单位1.Univ Chinese Acad Sci CAS, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Comput Tech, Key Lab Intell Info Proc, Beijing 100080, Peoples R China
3.Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China
4.Harbin Inst Tech, Sch Comp Sci & Technol, Harbin, Heilongjiang, Peoples R China
推荐引用方式
GB/T 7714
Li, Guorong,Huang, Qingming,Jiang, Shuqiang,et al. Online learning affinity measure with CovBoost for multi-target tracking[J]. NEUROCOMPUTING,2015,168:327-335.
APA Li, Guorong,Huang, Qingming,Jiang, Shuqiang,Xu, Yingkun,&Zhang, Weigang.(2015).Online learning affinity measure with CovBoost for multi-target tracking.NEUROCOMPUTING,168,327-335.
MLA Li, Guorong,et al."Online learning affinity measure with CovBoost for multi-target tracking".NEUROCOMPUTING 168(2015):327-335.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Guorong]的文章
[Huang, Qingming]的文章
[Jiang, Shuqiang]的文章
百度学术
百度学术中相似的文章
[Li, Guorong]的文章
[Huang, Qingming]的文章
[Jiang, Shuqiang]的文章
必应学术
必应学术中相似的文章
[Li, Guorong]的文章
[Huang, Qingming]的文章
[Jiang, Shuqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。