CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Socio-mobile landmark recognition using local features with adaptive region selection
Zhang, Chunjie1; Zhang, Yifan2; Zhu, Xiaobin3; Xue, Zhe1; Qin, Lei4; Huang, Qingming1,4; Tian, Qi5
2016-01-08
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号172页码:100-113
摘要With the fast development of mobile devices as well as the broadband wireless network, mobile devices are playing a more and more important role in people's daily life. Nowadays, many landmark images are captured by mobile devices. However, these images are often captured under different lightening conditions with varied poses and camera orientations. Besides, people are inherently connected by personal interests as well as various interactions. To alleviate the imaging problem with mobile devices as well as take advantage of the social information for mobile visual applications, we propose a novel socio-mobile visual recognition method using local features with adaptive region selection. We densely extract local regions and use the pixel gradients to represent each local region. Each local region is divided into 4 x 4 subregions to combine the spatial information. Instead of using fixed pixel numbers for each subregion, we adaptively choose the proper size of each subregion to cope with varied poses and camera orientations. The most discriminative local features are then chosen by minimizing the sparse coding loss. Besides, a geo-discriminative codebook is also generated to take advantages of images' location information. Moreover, we jointly consider the visual distances as well as user's friends' matching results to further boost the final visual recognition performance. We achieve the state-of-the-art performance on the Stanford mobile visual search dataset and the San Francisco landmark dataset. These experimental results demonstrate the effectiveness and efficiency of the proposed adaptive region selection based local features for sodo-mobile landmark recognition. (C) 2015 Elsevier B.V. All rights reserved.
关键词Mobile Social relationship Adaptive region selection Local feature Geo-codebook Visual recognition
DOI10.1016/j.neucom.2014.10.105
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973 Program)[2012CB316400] ; National Natural Science Foundation of China[61303154] ; National Natural Science Foundation of China[61202325] ; National Natural Science Foundation of China[61402023] ; National Natural Science Foundation of China[61379100] ; National Natural Science Foundation of China[61133003] ; National Natural Science Foundation of China[61332016]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000364884700012
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/9109
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Yifan
作者单位1.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
3.Beijing Technol & Business Univ, Beijing, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Key Lab Intell Info Proc, Beijing 100190, Peoples R China
5.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
推荐引用方式
GB/T 7714
Zhang, Chunjie,Zhang, Yifan,Zhu, Xiaobin,et al. Socio-mobile landmark recognition using local features with adaptive region selection[J]. NEUROCOMPUTING,2016,172:100-113.
APA Zhang, Chunjie.,Zhang, Yifan.,Zhu, Xiaobin.,Xue, Zhe.,Qin, Lei.,...&Tian, Qi.(2016).Socio-mobile landmark recognition using local features with adaptive region selection.NEUROCOMPUTING,172,100-113.
MLA Zhang, Chunjie,et al."Socio-mobile landmark recognition using local features with adaptive region selection".NEUROCOMPUTING 172(2016):100-113.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Chunjie]的文章
[Zhang, Yifan]的文章
[Zhu, Xiaobin]的文章
百度学术
百度学术中相似的文章
[Zhang, Chunjie]的文章
[Zhang, Yifan]的文章
[Zhu, Xiaobin]的文章
必应学术
必应学术中相似的文章
[Zhang, Chunjie]的文章
[Zhang, Yifan]的文章
[Zhu, Xiaobin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。