CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
PuDianNao: A Polyvalent Machine Learning Accelerator
Liu, Daofu1; Chen, Tianshi1; Liu, Shaoli1; Zhou, Jinhong2; Zhou, Shengyuan1; Teman, Olivier3; Feng, Xiaobing1; Zhou, Xuehai2; Chen, Yunji4
2015-04-01
发表期刊ACM SIGPLAN NOTICES
ISSN0362-1340
卷号50期号:4页码:369-381
摘要Machine Learning (ML) techniques are pervasive tools in various emerging commercial applications, but have to be accommodated by powerful computer systems to process very large data. Although general-purpose CPUs and GPUs have provided straightforward solutions, their energy-efficiencies are limited due to their excessive supports for flexibility. Hardware accelerators may achieve better energy-efficiencies, but each accelerator often accommodates only a single ML technique (family). According to the famous No-Free-Lunch theorem in the ML domain, however, an ML technique performs well on a dataset may perform poorly on another dataset, which implies that such accelerator may sometimes lead to poor learning accuracy. Even if regardless of the learning accuracy, such accelerator can still become inapplicable simply because the concrete ML task is altered, or the user chooses another ML technique. In this study, we present an ML accelerator called PuDianNao, which accommodates seven representative ML techniques, including k-means, k-nearest neighbors, naive bayes, support vector machine, linear regression, classification tree, and deep neural network. Benefited from our thorough analysis on computational primitives and locality properties of different ML techniques, PuDianNao can perform up to 1 0 5 6 GOP/s (e.g., additions and multiplications) in an area of 3 : 5 1 mm 2, and consumes 596 mW only. Compared with the NVIDIA K20M GPU (28nm process), PuDianNao (65nm process) is 1.20x faster, and can reduce the energy by 128.41x.
DOI10.1145/2694344.2694358
收录类别SCI
语种英语
资助项目NSF of China[61100163] ; NSF of China[61133004] ; NSF of China[61222204] ; NSF of China[61221062] ; NSF of China[61303158] ; NSF of China[61473275] ; NSF of China[61432016] ; NSF of China[61472396] ; 973 Program of China[2015CB358800] ; 973 Program of China[2011CB302500] ; Strategic Priority Research Program of the CAS[XDA06010403] ; International Collaboration Key Program of the CAS[171111KYSB20130002] ; Google Faculty Research Award ; Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI) ; 10,000 talent program ; 1,000 talent program
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000370874900026
出版者ASSOC COMPUTING MACHINERY
引用统计
被引频次:165[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/8830
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Tianshi
作者单位1.ICT, SKLCA, Beijing, Peoples R China
2.USTC, Hefei, Peoples R China
3.Inria, Villers, France
4.ICT, SKLCA, CAS Ctr Excellence Brain Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liu, Daofu,Chen, Tianshi,Liu, Shaoli,et al. PuDianNao: A Polyvalent Machine Learning Accelerator[J]. ACM SIGPLAN NOTICES,2015,50(4):369-381.
APA Liu, Daofu.,Chen, Tianshi.,Liu, Shaoli.,Zhou, Jinhong.,Zhou, Shengyuan.,...&Chen, Yunji.(2015).PuDianNao: A Polyvalent Machine Learning Accelerator.ACM SIGPLAN NOTICES,50(4),369-381.
MLA Liu, Daofu,et al."PuDianNao: A Polyvalent Machine Learning Accelerator".ACM SIGPLAN NOTICES 50.4(2015):369-381.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Daofu]的文章
[Chen, Tianshi]的文章
[Liu, Shaoli]的文章
百度学术
百度学术中相似的文章
[Liu, Daofu]的文章
[Chen, Tianshi]的文章
[Liu, Shaoli]的文章
必应学术
必应学术中相似的文章
[Liu, Daofu]的文章
[Chen, Tianshi]的文章
[Liu, Shaoli]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。