CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A cross-media distance metric learning framework based on multi-view correlation mining and matching
Zhang, Hong1,2; Gao, Xingyu3; Wu, Ping1; Xu, Xin1
2016-03-01
发表期刊WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS
ISSN1386-145X
卷号19期号:2页码:181-197
摘要With the explosion of multimedia data, it is usual that different multimedia data often coexist in web repositories. Accordingly, it is more and more important to explore underlying intricate cross-media correlation instead of single-modality distance measure so as to improve multimedia semantics understanding. Cross-media distance metric learning focuses on correlation measure between multimedia data of different modalities. However, the existence of content heterogeneity and semantic gap makes it very challenging to measure cross-media distance. In this paper, we propose a novel cross-media distance metric learning framework based on sparse feature selection and multi-view matching. First, we employ sparse feature selection to select a subset of relevant features and remove redundant features for high-dimensional image features and audio features. Secondly, we maximize the canonical coefficient during image-audio feature dimension reduction for cross-media correlation mining. Thirdly, we further construct a Multi-modal Semantic Graph to find embedded manifold cross-media correlation. Moreover, we fuse the canonical correlation and the manifold information into multi-view matching which harmonizes different correlations with an iteration process and build Cross-media Semantic Space for cross-media distance measure. The experiments are conducted on image-audio dataset for cross-media retrieval. Experiment results are encouraging and show that the performance of our approach is effective.
关键词Cross-media Distance metric Sparse feature selection Multi-view matching
DOI10.1007/s11280-015-0342-4
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61373109] ; National Natural Science Foundation of China[61003127] ; National Natural Science Foundation of China[61273303] ; National Natural Science Foundation of China[61440016] ; State Key Laboratory of Software Engineering[SKLSE2012-09-31] ; Program for Outstanding Young Science and Technology Innovation Teams in Higher Education Institutions of Hubei Province, China[T201202] ; Natural Science Foundation of Hubei Provincial of China[2014CFB247]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering
WOS记录号WOS:000370190000002
出版者SPRINGER
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/8733
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Hong
作者单位1.Wuhan Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan 430081, Peoples R China
2.Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Hong,Gao, Xingyu,Wu, Ping,et al. A cross-media distance metric learning framework based on multi-view correlation mining and matching[J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS,2016,19(2):181-197.
APA Zhang, Hong,Gao, Xingyu,Wu, Ping,&Xu, Xin.(2016).A cross-media distance metric learning framework based on multi-view correlation mining and matching.WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS,19(2),181-197.
MLA Zhang, Hong,et al."A cross-media distance metric learning framework based on multi-view correlation mining and matching".WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS 19.2(2016):181-197.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Hong]的文章
[Gao, Xingyu]的文章
[Wu, Ping]的文章
百度学术
百度学术中相似的文章
[Zhang, Hong]的文章
[Gao, Xingyu]的文章
[Wu, Ping]的文章
必应学术
必应学术中相似的文章
[Zhang, Hong]的文章
[Gao, Xingyu]的文章
[Wu, Ping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。