Institute of Computing Technology, Chinese Academy IR
Maximum bipartite matchings with low rank data: Locality and perturbation analysis | |
Liu, Xingwu1; Teng, Shang-Hua2,3 | |
2016-03-28 | |
发表期刊 | THEORETICAL COMPUTER SCIENCE |
ISSN | 0304-3975 |
卷号 | 621页码:82-91 |
摘要 | The maximum-weighted bipartite matching problem between two sets U = V = [1 : n] is defined by a matrix W = (W-ij)(nxn) of "affinity" data. Its goal is to find a permutation pi over [1 : n] whose total weight Sigma(i) w(i,pi(i)) is maximized. In various practical applications,(3) the affinity data may be of low rank (or approximately low rank): we say W has rank at most r if there are 2(r) vectors u(1), . . . , u(r), v(1), . . . v(r) is an element of R-n such that W = Sigma (i =1) (T) u(i)v(i)(T). In this paper, we partially address a question raised by David Karger who asked for a characterization of the structure of the maximum-weighted bipartite matchings when the rank of the affinity data is low. In particular, we study the following locality property: For an integer k > 0, we say that the bipartite matchings of G have locality at most k if for every sub-optimal matching pi of G, there exists a matching sigma of larger total weight that can be reached from it by an augmenting cycle of length at most k. We prove the following main theorem: For every W is an element of [0, 1](nxn) of rank r and is an element of is an element of [0,1], there exists (W) over tilde is an element of [0, 1](nxn) such that (i) (W) over tilde has rank at most r + 1, (ii) the entry-wise infinity-norm parallel to W - W parallel to(infinity) <= is an element of, and (iii) the weighted bipartite graph with affinity data W has locality at most [r/is an element of](r). In contrast, this property is not true if perturbations are not allowed. We also give a tight bound for the binary case. (C) 2016 Elsevier B.V. All rights reserved. |
关键词 | Bipartite graphs Maximum matching Matrix decomposition Permutation |
DOI | 10.1016/j.tcs.2016.01.033 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61173009] ; NSF[1111270] ; NSF[0964481] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Theory & Methods |
WOS记录号 | WOS:000371939100007 |
出版者 | ELSEVIER SCIENCE BV |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/8644 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Teng, Shang-Hua |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China 2.Univ So Calif, Dept Comp Sci, Viterbi Sch Engn, Los Angeles, CA 90089 USA 3.Univ So Calif, Los Angeles, CA USA |
推荐引用方式 GB/T 7714 | Liu, Xingwu,Teng, Shang-Hua. Maximum bipartite matchings with low rank data: Locality and perturbation analysis[J]. THEORETICAL COMPUTER SCIENCE,2016,621:82-91. |
APA | Liu, Xingwu,&Teng, Shang-Hua.(2016).Maximum bipartite matchings with low rank data: Locality and perturbation analysis.THEORETICAL COMPUTER SCIENCE,621,82-91. |
MLA | Liu, Xingwu,et al."Maximum bipartite matchings with low rank data: Locality and perturbation analysis".THEORETICAL COMPUTER SCIENCE 621(2016):82-91. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Xingwu]的文章 |
[Teng, Shang-Hua]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Xingwu]的文章 |
[Teng, Shang-Hua]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Xingwu]的文章 |
[Teng, Shang-Hua]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论