CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Study on density peaks clustering based on k-nearest neighbors and principal component analysis
Du, Mingjing1,2; Ding, Shifei1,2; Jia, Hongjie1,2
2016-05-01
发表期刊KNOWLEDGE-BASED SYSTEMS
ISSN0950-7051
卷号99页码:135-145
摘要Density peaks clustering (DPC) algorithm published in the US journal Science in 2014 is a novel clustering algorithm based on density. It needs neither iterative process nor more parameters. However, original algorithm only has taken into account the global structure of data, which leads to missing many clusters. In addition, DPC does not perform well when data sets have relatively high dimension. Especially, DPC generates wrong number of clusters of real-world data sets. In order to overcome the first problem, we propose a density peaks clustering based on k nearest neighbors (DPC-KNN) which introduces the idea of k nearest neighbors (KNN) into DPC and has another option for the local density computation. In order to overcome the second problem, we introduce principal component analysis (PCA) into the model of DPC-KNN and further bring forward a method based on PCA (DPC-KNN-PCA), which preprocesses high dimensional data. By experiments on synthetic data sets, we demonstrate the feasibility of our algorithms. By experiments on real-world data sets, we compared this algorithm with k-means algorithm and spectral clustering (SC) algorithm in accuracy. Experimental results show that our algorithms are feasible and effective. (C) 2016 Elsevier B.V. All rights reserved.
关键词Data clustering Density peaks k Nearest neighbors (KNN) Principal component analysis (PCA)
DOI10.1016/j.knosys.2016.02.001
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61379101] ; National Key Basic Research Program of China[2013CB329502]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000374603400013
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:356[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/8545
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ding, Shifei
作者单位1.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100090, Peoples R China
推荐引用方式
GB/T 7714
Du, Mingjing,Ding, Shifei,Jia, Hongjie. Study on density peaks clustering based on k-nearest neighbors and principal component analysis[J]. KNOWLEDGE-BASED SYSTEMS,2016,99:135-145.
APA Du, Mingjing,Ding, Shifei,&Jia, Hongjie.(2016).Study on density peaks clustering based on k-nearest neighbors and principal component analysis.KNOWLEDGE-BASED SYSTEMS,99,135-145.
MLA Du, Mingjing,et al."Study on density peaks clustering based on k-nearest neighbors and principal component analysis".KNOWLEDGE-BASED SYSTEMS 99(2016):135-145.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Du, Mingjing]的文章
[Ding, Shifei]的文章
[Jia, Hongjie]的文章
百度学术
百度学术中相似的文章
[Du, Mingjing]的文章
[Ding, Shifei]的文章
[Jia, Hongjie]的文章
必应学术
必应学术中相似的文章
[Du, Mingjing]的文章
[Ding, Shifei]的文章
[Jia, Hongjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。