CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Exploiting Heterogeneous Scientific Literature Networks to Combat Ranking Bias: Evidence From the Computational Linguistics Area
Jiang, Xiaorui1; Sun, Xiaoping2; Yang, Zhe3; Hai Zhuge2,4; Yao, Jianmin5
2016-07-01
发表期刊JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY
ISSN2330-1635
卷号67期号:7页码:1679-1702
摘要It is important to help researchers find valuable papers from a large literature collection. To this end, many graph-based ranking algorithms have been proposed. However, most of these algorithms suffer from the problem of ranking bias. Ranking bias hurts the usefulness of a ranking algorithm because it returns a ranking list with an undesirable time distribution. This paper is a focused study on how to alleviate ranking bias by leveraging the heterogeneous network structure of the literature collection. We propose a new graph-based ranking algorithm, MutualRank, that integrates mutual reinforcement relationships among networks of papers, researchers, and venues to achieve a more synthetic, accurate, and less-biased ranking than previous methods. MutualRank provides a unified model that involves both intra- and inter-network information for ranking papers, researchers, and venues simultaneously. We use the ACL Anthology Network as the benchmark data set and construct the gold standard from computer linguistics course websites of well-known universities and two well-known textbooks. The experimental results show that MutualRank greatly outperforms the state-of-the-art competitors, including PageRank, HITS, CoRank, Future Rank, and P-Rank, in ranking papers in both improving ranking effectiveness and alleviating ranking bias. Rankings of researchers and venues by MutualRank are also quite reasonable.
关键词bibliometrics
DOI10.1002/asi.23463
收录类别SCI
语种英语
资助项目National Science Foundation of Zhejiang Province[LY14F020016] ; National Science Foundation of Zhejiang Province[LR14F020002] ; National Science Foundation of China[1402412] ; National Science Foundation of China[K111818612]
WOS研究方向Computer Science ; Information Science & Library Science
WOS类目Computer Science, Information Systems ; Information Science & Library Science
WOS记录号WOS:000378644700010
出版者WILEY-BLACKWELL
引用统计
被引频次:25[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/8321
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jiang, Xiaorui
作者单位1.Zhejiang Univ Technol, Sch Informat Engn, 288 Liuhe Rd, Hangzhou 310023, Zhejiang, Peoples R China
2.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, 6 Kexueyuan South Rd, Beijing 100190, Peoples R China
3.Zhejiang Univ, Dept Informat Sci & Elect Engn, 37 Zheda Rd, Hangzhou 310007, Zhejiang, Peoples R China
4.Aston Univ, Birmingham B4 7ET, W Midlands, England
5.Soochow Univ, Sch Comp Sci & Technol, 1 Shizi Rd, Suzhou 215006, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Xiaorui,Sun, Xiaoping,Yang, Zhe,et al. Exploiting Heterogeneous Scientific Literature Networks to Combat Ranking Bias: Evidence From the Computational Linguistics Area[J]. JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY,2016,67(7):1679-1702.
APA Jiang, Xiaorui,Sun, Xiaoping,Yang, Zhe,Hai Zhuge,&Yao, Jianmin.(2016).Exploiting Heterogeneous Scientific Literature Networks to Combat Ranking Bias: Evidence From the Computational Linguistics Area.JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY,67(7),1679-1702.
MLA Jiang, Xiaorui,et al."Exploiting Heterogeneous Scientific Literature Networks to Combat Ranking Bias: Evidence From the Computational Linguistics Area".JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY 67.7(2016):1679-1702.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiang, Xiaorui]的文章
[Sun, Xiaoping]的文章
[Yang, Zhe]的文章
百度学术
百度学术中相似的文章
[Jiang, Xiaorui]的文章
[Sun, Xiaoping]的文章
[Yang, Zhe]的文章
必应学术
必应学术中相似的文章
[Jiang, Xiaorui]的文章
[Sun, Xiaoping]的文章
[Yang, Zhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。